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Predicting the reproductive toxicity of chemicals using ensemble
learning methods and molecular fingerprints

Huawei Fenga,1, Li Zhanga,b,c,1, Shimeng Lia, Lili Liua, Tianzhou Yanga, Pengyu Yangd,
Jian Zhaoa, Isaiah Tuvia Arkine, Hongsheng Liub,c,f,*
a School of Life Science, Liaoning University, Shenyang, 110036, China
b Technology Innovation Center for Computer Simulating and Information Processing of Bio-macromolecules of Shenyang, Shenyang, 110036, China
c Engineering Laboratory for Molecular Simulation and Designing of Drug Molecules of Liaoning, Liaoning University, Shenyang, 110036, China
d School of Information, Liaoning University, Shenyang, 110036, China
eDepartment of Biological Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat-Ram, Jerusalem, 91904, Israel
f School of Pharmaceutical Science, Liaoning University, Shenyang, 110036, China

H I G H L I G H T S

� Ensemble learning models were built for predicting chemical reproductive toxicity.
� The best model achieved an average accuracy of 86.33 % with 5-fold cross-validation.
� In 5-fold cross-validation, an area under the curve (AUC) of the best model was 0.937.
� Some substructures related to the reproductive toxicity were achieved.
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A B S T R A C T

Reproductive toxicity endpoints are a significant safety concern in the assessment of the adverse effects
of chemicals in drug discovery. Computational models that can accurately predict a chemical's toxic
potential are increasingly pursued to replace traditional animal experiments. Thus, ensemble learning
models were built to predict the reproductive toxicity of compounds. Our ensemble models were
developed using support vector machine, random forest, and extreme gradient boosting methods and 9
molecular fingerprints calculated for a dataset containing 1823 chemicals. The best prediction
performance was achieved by the Ensemble-Top12 model, with an accuracy (ACC) of 86.33 %, a sensitivity
(SEN) of 82.02 %, a specificity (SPE) of 90.19 %, and an area under the receiver operating characteristic
curve (AUC) of 0.937 in 5-fold cross-validation and ACC, SEN, SPE, and AUC values of 84.38 %, 86.90 %,
90.67 %, and 0.920, respectively, in external validation. We also defined the applicability domain (AD) of
the ensemble model by calculating the Tanimoto distance of the training set. Compared with models in
existing literature, our ensemble model achieves relatively high ACC, SPE and AUC values. We also
identified several fingerprint features related to chemical reproductive toxicity. Considering the
performance of model, we recommend using the Ensemble-Top12 model to predict reproductive toxicity
in early drug development.
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1. Introduction

Drug-induced toxicity is a major reason for the failure of drug
research and development (Andy et al., 2020; Munos, 2009). In
particular, among the 14 types of toxicity associated with drug
withdrawal, reproductive toxicity (herein more generally referred
to as reprotoxicity) accounts for 3% of instances of drug
withdrawal/discontinuation (Siramshetty et al., 2015) and more
than 10 % of preclinical toxicology-related attrition (Guengerich
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and Macdonald, 2007). Therefore, early assessment of the toxic
properties of chemical structures is important in the field of drug
development (Brannen et al., 2016). Reprotoxicity is not a singular
endpoint but rather a range of endpoints mainly including
reproductive toxicity and developmental toxicity (Marzo and
Benfenati, 2018). Reprotoxicity is related to impairment of male
and female reproductive capacities and the induction of non-
genetically harmful effects on offspring (Lo Piparo and Worth,
2010). For reprotoxicity assessments, traditional experimental
testing for chemical toxicity profiles is very expensive both
financially and in terms of animal usage and requires a long time
(Marzo and Benfenati, 2018). It has been estimated that toxicity
tests in animal models account for 54 % of the testing costs related
to REACH compliance (Scialli, 2008). Moreover, although far more
animals are used in reprotoxicity testing than in other types of
testing, the results of many of these reprotoxicity tests may not be
highly correlated with effects observed in humans (Höfer et al.,
2004). Another factor that increases the difficulty of toxicity
endpoint assessments is that experimental data are not always
easy to explain; usually, whether a compound is toxic to
reproduction directly or because it causes general systemic toxicity
that also affects reproductivity is not always clear. For all these
reasons, the results of animal experiments cannot easily reflect the
human body’s response to new drugs or provide any risk
exemption.

To develop effective and accurate alternatives (non-testing
methods), conducting high-throughput computer toxicity predic-
tions is an attractive strategy. One dominant and highly developed
toxicity-prediction approach is Quantitative Structure-Activity
Relationships (QSARs) based on chemical structural properties
(Lu et al., 2018; Chen-Lo et al., 2018; Satpathy, 2019). This method
aims to mathematically describe the contributions of one or more
physicochemical properties to bioactivity (e.g., reprotoxicity)
(Benfenati et al., 2019; Cherkasov et al., 2014). Additionally, QSARs
that yield true quantitative predictions are useful as these
quantitative outputs are more useful in risk assessments. To date,
many QSAR models have been developed using machine learning
methods to predict chemical reprotoxicity (Basant et al., 2016;
Jiang et al., 2019; Ghorbanzadeh et al., 2016; Gunturi and
Ramamurthi, 2014; Marzo and Benfenati, 2018). However, most
of these models are local models based on only one chemical class,
several chemical classes with only one or a few toxicity endpoints,
or small datasets (fewer than 500 compounds). Thus, these models
may have poor generalization ability in large external datasets. One
QSAR global model has been established (Jiang et al., 2019), but its
prediction performance requires further improvement to reduce
the number of candidate chemicals to be tested with in vivo
experiments. Notably, some models were produced through a
simple fine-tuning process and have not yet been assessed through
appropriate cross-validation (Zhang et al., 2017a; Marzo and
Benfenati, 2018).

Compared to molecular descriptors, molecular fingerprints
with binary features directly link to chemical features and are more
interpretable because each bit corresponds to a specific substruc-
ture (Yang et al., 2018). Generally, these molecular fingerprints are
typed based on transformation to a bit-string (Kwon et al., 2019).
The main types are substructure key-based fingerprints, circular
fingerprints, and topological or path-based fingerprints (Cereto-
Massagué et al., 2015). Structure key-based fingerprints (e.g.,
MACCS and PubChem) encode molecular structures based on the
presence of substructures or features and have higher performance
than hash fingerprints in toxicity prediction (Webb et al., 2014),
although the choice of descriptors is not a major factor in model
performance. ECFP is a commonly used circular fingerprint that
encoded molecular structures based on hashing fragments up to a
specific radius (Kwon et al., 2019). Notably, however, an ECFP
fingerprint is usually difficult to unravel. In general, current
research shows that combining different types of fingerprints
(especially structure-based methods) with different machine
learning methods is an optimal strategy that can improve the
diversity of the model and, thus, its prediction performance
(Cereto-Massagué et al., 2015; Zhang et al., 2017b). In terms of
model development, ensemble modelling can sufficiently fuse
model predictions together. Ensemble learning usually produces
higher accuracy than individual models because it can manage the
strengths and weaknesses of each base learner (Ai et al., 2018;
Mora et al., 2020; Kwon et al., 2019; Ballabio et al., 2019). More
recently, ensemble learning has been applied to predict chemical
toxicity and may provide encouraging results. In this respect,
Furxhi et al. built voting ensemble models for predicting
nanoparticle toxicity in vitro by using the Copeland Index to select
the optimal classifiers. Liu et al. (Liu et al., 2020) used three
machine learning methods to combine molecular fingerprints and
molecular descriptors to build a predictive cardiotoxicity ensemble
model with an accuracy of 84.9 % and an AUC of 0.887. Yin et al. (Yin
et al., 2019) used MACCS fingerprints to construct ensemble
models for predicting cytotoxicity, the best of which achieved an
AUC of 0.852. One should be aware, however, that because machine
learning methods are difficult to explain, sometimes combining
them renders such methods increasingly challenging.

In this work, we developed in silico predictive models to predict
reprotoxicity with machine learning methods using 1823 organic
chemicals. To this end, multiple basic classifiers were first
constructed using 9 types of molecular fingerprints and 3 machine
learning algorithms. Then, several ensemble models were built by
combining multiple subsets of the basic classifiers based on
different fingerprint types and machine learning algorithms. An
applicability domain (AD) is also defined to analyse the accuracy
and robustness of the ensemble model. Finally, structural features
associated with reprotoxicity were identified. The predictive
capability of the models developed in this study was tested using
both 5-fold cross-validation and an external test set.

2. Materials and methods

2.1. Toxicity datasets

The reprotoxicity dataset used in this study was acquired from a
previous publication (Jiang et al., 2019) and contains 2487
compounds drugs collected from the ECHA-C & LInventory and
OECD-eChemPortal, public databases. In the dataset, chemicals are
labelled as positive (reprotoxicants) or negative (non-reprotox-
icants) as described by Jiang et al. (Jiang et al., 2019). First, the
chemical structure of each compound was carefully examined.
Subsequently, to ensure the uniqueness and high quality of the
data, all simplified molecular input line entry specifications
(SMILES) were formatted to the canonical SMILES format, and
some inorganic compounds and complex compounds were
removed from the analysis (Jiang et al., 2019). Finally, 1823
selected compounds were randomly divided into a training set
(cross-validation set) and an external validation set with a ratio of
8:2. The lists of chemicals in both the training set and the external
set used for model building are shown in Table S1 and Table S2.

2.2. Calculation of molecular fingerprints

Nine types of molecular fingerprints for QSAR modelling were
calculated for the compounds in the datasets using PaDEL-
Descriptor (Yap, 2011): the Estate fingerprint, the MACCS finger-
print, the PubChem fingerprint, the Substructure (FP4) fingerprint,
the Substructure Count (FP4C) fingerprint, the Klekota-Roth (KR)
fingerprint, the Klekota-Roth Count (KRC) fingerprint, the 2D Atom
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Pairs (AP2D) fingerprint and the 2D Atom Pairs Count (AP2DC)
fingerprint (Table S3). Detailed descriptions of these fingerprints
can be found in the original studies (Yap, 2011).

2.3. Feature selection

Feature selection provides an effective way to process high-
dimensional data while removing irrelevant and redundant data to
reduce the computation time, improve the learning accuracy, and
gain a better understanding of machine learning models or data (Jie
et al., 2018). In the current study, two methods were used for feature
selection: low-variation feature filtering and high-correlation
feature filtering. The nearZeroVar function in the R package caret
(version 6.0–84) (Kuhn, 2008) was used to filter out identical or
almost identical features from all samples. Since a molecular
fingerprint consists of binary variables that take only values of 0 and
1, the Tanimoto coefficient (Tc) is more suitable than the Pearson
correlationcoefficient forcomputingthe similaritybetweenfeatures
for high-correlation feature filtering (Bajusz et al., 2015; Chen-Lo
et al., 2018). Therefore, in this study, the Tc was used for high-
correlation feature filtering. Various threshold values (0.5, 0.6, 0.7,
0.8, 0.9, 0.95, 0.99, and 1.0 (no deletion)) were tested to identify the
optimal Tc threshold based on the performance of a random forest
model in 5-fold cross-validation. The Tc between two features (bits)
A and B can be computed as follows:

Tc ¼ c
a þ b � c

ð1Þ

where a is the number of features in fingerprint A, b is the number
of features in B, and c is the number of features common to a and b.

2.4. Model construction

Ensemble models formed by fusing the results of various basic
classifiers usually produce more accurate results than any
individual model. In this study, three machine learning algorithms,
namely, the support vector machine (SVM) algorithm, the random
forest (RF) algorithm and the extreme gradient boosting (XGBoost)
algorithm, were used for model building. These algorithms were
implemented in R software (version 3.3.1). Machine learning
packages such as the kernlab (version 0.9–25) package (Karatzo-
glou et al., 2004), the randomForest (version 4.6–12) package (Liaw
and Wiener, 2002), and the xgboost (version 0.4–4) package (Chen
and Guestrin, 2016) were used for model implementation. The way
in which the ensemble models were built has been described fully
in our previously published studies (Zhang et al., 2017b; Liu et al.,
2020). Nine basic classifiers were constructed for each machine
learning algorithm by applying the nine molecular fingerprints to
the corresponding machine learning algorithms. Here, a total of 27
basic classifiers were generated, which were used to further
develop the ensemble model. We then developed 27 new
ensemble models by combining a subset of 27 basic classifiers
via averaging their predictive probabilities. To do this, we first
ranked all the ensemble models based on their AUC scores. Among
them, the Ensemble-Top1 model was the best basic classifier with
the highest AUC, and the Ensemble-Top2 model was built by
merged the first two basic classifiers. The Ensemble-Top3 to
Ensemble-Top27 models were also created by combining the first
3–27 basic classifiers. Last, cross-validation was performed to
evaluate the predictive performance of all ensemble models. The
best one with the highest AUC score was selected as the most
appropriate ensemble model for future toxicity prediction.

2.4.1. Support vector machine
SVM is a popular intelligent learning algorithm based on the

principle of structural risk minimization (SRM) and is generally
applied to classification and regression problems. This method is
well known for its high-performance prediction capability and low
risk of overfitting (Cover and Hart,1967). An SVM classifier operates
by finding an optimal hyperplane (linear separator) in a multidi-
mensional space to separate a set of points into two classes: positive
and negative. In the current work, we adopted the radial basis
function (RBF) kernel when constructing the SVM classifiers to map
the input data to an infinite-dimensional space. We also applied the
random search method (Bergstra and Bengio, 2012) using the caret
package tooptimizetwo specific SVMparameters: theregularization
parameter C and the g parameter of the RBF kernel.

2.4.2. Random forest
RF is an effective ensemble machine learning algorithm that

operates by constructing many independent decision trees using
randomly selected subsets of the training samples and features and
then collecting the results of these decision trees. To devise a
prediction for a new input, that input is run through every decision
tree, and the results are treated as votes on how the input should be
classified. The performance of an RF classifier is considered to be
better than that of a single decision tree (DT) classifier, as it reduces
the risk of overfitting when dealing with a large number of features
and provides higher accuracy at the levels of individual trees and
paths (Gandhi et al., 2018). In the current study, we used the
randomForest function to build RF classifiers, where the two main
parameters, i.e., the number of classification trees in the forest and
the number of variables randomly selected for each node split,
were set to default values of ntree = 500 and mtry = the square root
of the number of features in the dataset, respectively. The relative
importance of each type of fingerprint feature was also calculated
using the importance function (randomForest package).

2.4.3. Extreme gradient boosting
XGBoost is another tree-based ensemble learning method. It

uses subtle penalization of the individual trees, thus allowing the
trees to have different numbers of terminal nodes (Zaslavskiy et al.,
2019). XGBoost possesses the merits of ease of use, ease of
parallelization and high predictive accuracy; consequently, it has
achieved superior outcomes compared with many other algo-
rithms in several machine learning competitions (Sheridan et al.,
2016). In this study, the caret package was used to optimize the
following four main parameters: the step size shrinkage (eta), the
maximum tree depth (max. depth), the minimum sum of the
instance weights (min. child. weight), and the maximum number
of iterations (nrounds).

2.5. Model evaluation

The performance of the constructed models was evaluated
using 5-fold cross validation and external validation. To reduce the
influence of the randomness of prediction and achieve a robust
performance evaluation, 5-fold cross-validation was repeated 100
times, resulting in the generation of 500 sets of performance
indicators. The accuracy (ACC), sensitivity (SEN), specificity (SPE),
and AUC were calculated by the following formulas:

ACC ¼ TP þ TN
TP þ TN þ FN þ FP

� 100 ð2Þ

SEN ¼ TP
TP þ FN

� 100 ð3Þ

SPE ¼ TN
TN þ FP

� 100 ð4Þ
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where TP, TN, FP, and FN represent the numbers of true positives,
true negatives, false positives, and false negatives, respectively.

The receiver operating characteristic (ROC) curve is a graphical
plot of the TP rate (SEN) against the FP rate (SPE) for the different
possible cut-off points of a diagnostic test. Compared to the SEN
and SPE, which reflect a model’s performance at a single cut-off,
ROC analysis can better support a multi-threshold comparison of
different algorithms and provide more global and unbiased
evaluation results (He et al., 2019). The AUC ranges in value from
0 to 1, where ‘1’ indicates perfect discrimination and ‘0.5’
represents a random model (Catherine et al., 2013).

2.6. Analysis of the applicability domain

Because the training set of the classification models cannot
cover the entire chemical space, the predictive power and
explanatory power of model for unknown chemicals may be
limited (Jiang et al., 2020). Therefore, the application domain (AD)
of the model must be predefined. For binary fingerprints, the
Tanimoto distance is a suitable method for calculating the
minimum distance of compounds between training and test sets
(Roy et al., 2015; González-Medina et al., 2017). The Tanimoto
distance is a distance measure transformed from Tc with values
Fig. 1. Relationships between the prediction performance of an RF model and the Tc thre
errors of the performance indexes obtained via 5-fold cross-validation with 100 repeti
ranging from 0 to 1. The Tanimoto distance is exactly 0 when two
compounds are identical; otherwise, the distance is 1.

Tanimoto distance ¼ 1 � Tc ð5Þ
Thus, we applied the Tanimoto distance to identify outliers and

compounds residing outside the AD. We evaluated the effect of
different Tanimoto distance values (0.1, 0.2, 0.3, 0.4, and 0.5) on
model performance to identify a suitable distance threshold.

3. Results and discussion

3.1. Feature selection

In this study, 1823 compounds were collected from the
reproductive toxicity dataset developed by Jiang et al. for use as
the training set (1458) and the external validation set (365) for the
establishment of reprotoxicity prediction models. We then
calculated 9 types of fingerprints for the compounds in the
dataset using the PaDEL-Descriptor software. As shown in Table S2,
both low-variation feature filtering and high-correlation feature
filtering can effectively eliminate a large number of redundant
features. To select the best threshold for the Tc, we used an RF
prediction model to evaluate the effects of several different
shold for the nine different fingerprint types. The error bars represent the standard
tions.
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thresholds on the high-correlation feature filtering of the
molecular fingerprints. The evaluation results indicated that a
threshold of 0.95 resulted in the best model prediction perfor-
mance (Fig. 1).

3.2. Prediction performance of the models

After performing feature selection, we used the SVM, RF and
XGBoost algorithms to generate 27 basic classifiers based on the
resulting fingerprints. These machine learning models were
assessed via 5-fold cross-validation, and their performances are
presented in Table S4. The ACC values of these basic classifiers
ranged from 77.1%–85.9%, the SEN values ranged from 69.2%–
83.3%, the SPE values ranged from 80.4%–90.0%, and the AUC values
ranged from 0.831 to 0.929. Among these models, the SVM model
based on PubChem fingerprints yielded the most accurate results,
and the RF model based on PubChem fingerprints achieved the
highest AUC value. Overall, the basic classifiers showed good
prediction performance, indicating that the machine learning
algorithms and molecular fingerprints used in this study are
effective for predicting the reproductive toxicity of chemicals.

To obtain a higher-performance prediction model for the
reproductive toxicity of compounds, we established 27 new
ensemble models by combining subsets of the basic models. The
validation results are listed in Table 1 and Fig. 2. Consistent with
expectations, the ACC and AUC values of the best ensemble
learning models were much higher than those of any of the single
models. Increased AUC values were found through 5-fold cross-
validation as the number of basic classifiers included in the
ensemble learning models increased. For example, the perfor-
mance of Ensemble-Top3, generated by combining the three best-
performing basic classifiers in terms of the AUC, was significantly
higher than that of Ensemble-Top1 (equivalent to the basic
classifier with the highest AUC value), with an ACC of 85.76 % �
0.08 % and an AUC of 0.931 � 0.001. Moreover, almost all ensemble
learning models showed slightly higher SEN and SPE values than
the basic models. Among all ensemble models, the performance of
Table 1
Predictive performance of the 27 ensemble models with the training set, as assessed via 5
indicators are expressed as the mean � standard error of the mean (SEM).

Model Name ACC (%) SEN (%)

Ensemble-Top1 85.78 � 0.08 81.13 �
Ensemble-Top2 85.09 � 0.08 81.05 �
Ensemble-Top3 85.76 � 0.08 82.08 �
Ensemble-Top4 86.05 � 0.08 82.49 �
Ensemble-Top5 86.09 � 0.08 82.60 �
Ensemble-Top6 86.05 � 0.08 82.73 �
Ensemble-Top7 86.02 � 0.08 82.36 �
Ensemble-Top8 86.01 � 0.08 82.19 �
Ensemble-Top9 86.08 � 0.08 81.99 �
Ensemble-Top10 86.26 � 0.08 82.04 �
Ensemble-Top11 86.33 � 0.08 82.01 �
Ensemble-Top12 86.33 � 0.08 82.02 �
Ensemble-Top13 86.35 � 0.08 81.92 �
Ensemble-Top14 86.25 � 0.08 81.84 �
Ensemble-Top15 86.27 � 0.08 81.71 �
Ensemble-Top16 86.4 � 0.08 81.73 �
Ensemble-Top17 86.27 � 0.08 81.48 �
Ensemble-Top18 86.28 � 0.08 81.44 �
Ensemble-Top19 86.23 � 0.08 81.11 �
Ensemble-Top20 86.18 � 0.08 80.77 �
Ensemble-Top21 86.03 � 0.08 80.51 �
Ensemble-Top22 85.88 � 0.08 80.39 �
Ensemble-Top23 85.71 � 0.08 80.15 �
Ensemble-Top24 85.54 � 0.08 79.85 �
Ensemble-Top25 85.50 � 0.08 79.69 �
Ensemble-Top26 85.38 � 0.08 79.25 �
Ensemble-Top27 85.29 � 0.08 79.02 �
the Ensemble-Top12 model was the most satisfactory; this model
was constructed from 12 basic classifiers, namely, PubChem + RF,
MACCS + RF, FP4C + RF, KRC + RF, PubChem + SVM, MACCS + SVM,
PubChem + XGBoost, MACCS + XGBoost, FP4C + XGBoost, APC2D +
XGBoost, KRC + XGBoost, and KR + XGBoost. The ACC, SEN, SPE, and
AUC values of this model were 86.33 %�0.08 %, 82.02 %�0.15 %,
90.19 %�0.11 %, and 0.937 � 0.001, respectively. We also found that
the AUC of the Ensemble-Top12 model was increased by 0.8 %
(t-test, p < 0.0001) compared to that of the PubChem + RF classifier,
which was also the basic model with the highest AUC value, and
the SEN of the Ensemble-Top12 model was increased by 1.28 %
(t-test, p < 0.0001) compared to that of the PubChem + SVM
classifier, which was also the most sensitive basic model. Although
no significant differences were observed between the two models,
we observed that the ACC of the Ensemble-Top12 model was
increased by 0.43 % (t-test, p > 0.05) compared to that of the most
accurate basic model (PubChem + SVM) and that the SPE of the
Ensemble-Top12 model was increased by 0.19 % (t-test, p > 0.05)
compared to that of the most specific basic model (PubChem + RF).
These results indicate that our ensemble model was able to
effectively achieve improved performance in reprotoxicity predic-
tion. This may be because the ensemble models combined diverse
independent models, thus allowing them to achieve better
prediction performance and more stable prediction results than
the basic classifiers.

An external validation set containing 365 compounds was used
to further validate the performance of the 27 ensemble models,
and the prediction performance results are shown in Table S5. In
the external validation, the ensemble models achieved ACC values
of 84.11 %–84.66 %, SEN values of 73.26 %–77.91 %, SPE values of
87.05 %–92.23 %, and AUC values of 0.907�0.920. Compared with
the performance of the 27 basic classifiers (Table S6), most
ensemble models achieved higher ACC and AUC values than almost
all individual classifiers. For example, for the basic model
established using XGBoost and MACCS molecular fingerprinting,
the ACC and AUC values in the external validation were 82.7 % and
0.906, respectively. Fig. 2 shows that the statistical performance
-fold cross-validation with 100 repetitions. The statistical values of the performance

 SPE (%) AUC

 0.15 89.96 � 0.12 0.929 � 0.001
 0.14 88.72 � 0.12 0.930 � 0.001

 0.14 89.06 � 0.12 0.931 � 0.001
 0.14 89.25 � 0.12 0.934 � 0.001
 0.14 89.23 � 0.12 0.934 � 0.001
 0.14 89.04 � 0.11 0.933 � 0.001
 0.14 89.3 � 0.12 0.935 � 0.001

 0.14 89.44 � 0.12 0.935 � 0.001
 0.14 89.76 � 0.11 0.936 � 0.001

 0.15 90.05 � 0.11 0.937 � 0.001
 0.15 90.22 � 0.11 0.937 � 0.001
 0.15 90.19 � 0.11 0.937 � 0.001

 0.15 90.34 � 0.11 0.937 � 0.001
 0.15 90.21 � 0.12 0.936 � 0.001

 0.15 90.37 � 0.12 0.936 � 0.001
 0.15 90.59 � 0.11 0.936 � 0.001
 0.15 90.58 � 0.11 0.936 � 0.001
 0.15 90.62 � 0.11 0.936 � 0.001

 0.15 90.82 � 0.11 0.935 � 0.001
 0.15 91.04 � 0.11 0.935 � 0.001

 0.15 90.99 � 0.11 0.934 � 0.001
 0.15 90.81 � 0.11 0.934 � 0.001

 0.15 90.70 � 0.11 0.933 � 0.001
 0.15 90.64 � 0.11 0.932 � 0.001
 0.16 90.72 � 0.11 0.932 � 0.001
 0.16 90.90 � 0.11 0.931 � 0.001
 0.16 90.92 � 0.11 0.931 � 0.001



Fig. 2. Relationships between the AUC value of an ensemble model and the number of basic classifiers included in the model, as assessed via cross-validation and external
validation.

Fig. 3. ROC curves of the Ensemble-Top12 model obtained from cross-validation and external validation. A, ROC curves with the training set. The thin, light-blue lines
represent the individual ROC curves of Ensemble-Top12 for each of the 100 repetitions of cross-validation, and the thick blue line represents the average ROC curve. B, ROC
curve for the external validation.

Table 2
Prediction results for chemicals outside the domain (OD) and inside the domain (ID) for the Ensemble-Top12 model with corresponding Tanimoto distance values.

Tanimoto distance ID OD

ACC SEN SPE AUC ACC SEN SPE AUC

0.10 93.46% 89.47 % 98.00 % 0.991 80.62% 71.30 % 88.11 % 0.872
0.20 89.29% 82.42 % 95.24 % 0.953 78.70% 71.60 % 85.23 % 0.857
0.30 86.67 % 78.69 % 92.64 % 0.935 76.25% 74.00 % 80.00 % 0.815
0.40 85.09% 78.34 % 90.81 % 0.923 73.91% 66.67 % 87.50 % 0.850
0.50 84.76% 77.51 % 91.15 % 0.921 50.00 % 66.67 % 0.00 % 0.000
No AD analysis 84.38 % 77.33 % 90.67 % 0.920 – – – –

H. Feng et al. / Toxicology Letters 340 (2021) 4–14 9
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increase for the ensemble model is even more pronounced in
external validation. Meanwhile, we also observed that in both the
cross-validation and the external validation, the AUC values of the
ensemble learning models formed an inverted U-curve when
plotted against the number of basic classifiers included in each
ensemble model (Fig. 2). This finding indicates that the predictive
power decreases when too many basic classifiers are combined,
which may be due to the inclusion of many poorly performing basic
classifiers. In addition, the ROC curves for the Ensemble-Top12
model on the training set and the external validation set are shown
in Fig. 3. These graphs show large AUC values for both cross-
validation and external validation, and the difference in the AUCs
between the two types of validation is only 1.7 %, indicating that
the level of overfitting in the ensemble model is quite low. Based on
the above results, we can conclude that the Ensemble-Top12 model
is a good classifier that can effectively and stably predict the
reproductive toxicity of compounds.

3.3. The applicability domain of the best model

The applicability domain (AD) reflects the coverage of the
prediction model. In this study, we used the Tanimoto distance
method based on AD2D, EState, KR, MACCS, Pubchem, and FP4
fingerprint to analyse the boundaries of the AD of the training set.
As shown in Figure S1, the number of compounds inside the AD (ID)
increases with increasing Tanimoto distance as more test
compounds were considered structurally similar to the training
set. Then, we investigated the predictability of the best Ensemble-
Top12 model by analysing whether the predefined AD can
accurately identify query samples from the external validation
set. As shown in Table 2, when the Tanimoto distance is set too
small (e.g., 0.1, 0.2), the test compounds inside the AD (ID) have
higher performance because the AD contains more highly similar
compounds. Similarly, the compounds outside the AD (OD) also
have higher performance because a distance that is too small will
lead to excessive extrapolation of intermediately similar com-
pounds. However, if the Tanimoto distance is set too large (e.g., 0.4,
0.5), too many dissimilar compounds are included in the
compounds ID, resulting in a decrease in model performance.
Notably, a large distance also leads to extrapolation of too few
compounds, which cannot be used for model validation, resulting
in lower performance. To balance the predictability of the model,
we recommend using 0.3 as the AD threshold. Of course, the AD
threshold can also be adjusted according to the needs of users. For
example, a lower threshold can be selected when a more accurate
Table 3
Performance indexes and evaluation methods for multiple reprotoxicity classification m

Model Name Endpoint(s) Dat
set

MultiCASE Drosophila SLRL 377
CAESAR RF Developmental toxicity 292

CAESAR AFP Developmental toxicity 292

LDA Reproductive LOAEL 206
NB Developmental toxicity 284

MACCSFP-SVM Sperm reduction, gonadal dysgenesis,
abnormal ovulation, teratogenicity and infertility growth
retardation

182

Ensemble-
Top12

Sperm reduction, gonadal dysgenesis,
abnormal ovulation, teratogenicity and infertility growth
retardation

182

LMO, Leave-many-out; 10-fold CV, Ten-fold cross-validation; 5-fold CV, Five-fold cross-v
fuzzy partition; LDA, Linear discriminant analysis; NB, Naïve Bayesian; SVM, Support v
Sensitivity; SPE, Specificity; AUC, Area under the receiver operating characteristic curv
model is needed. Under the recommended AD threshold (0.3), the
count of test compounds ID was 78.08 % (285/365) of all the
compounds in the external validation set; compounds ID had an
AUC of 0.935, ACC of 86.67 %, SEN of 78.69 %, and SPE of 92.64 %,
which were significantly higher than the values for the perfor-
mance of compounds OD. Compared with the external validation
set without AD analysis (Table S5), the performance of compounds
ID with a Tanimoto distance of 0.3 achieved higher ACC, SEN, SPE,
and AUC values. From the above results, the use of the AD
significantly improved the prediction performance of the ensem-
ble model.

3.4. Comparison with other models

Recently, a few computational models have been developed for
the prediction of chemical reprotoxicity. The prediction perfor-
mance estimated using the classical validation method (where the
dataset consists of two separate parts, a training set and a test set)
may be biased by the single split of the data. Thus, to ensure the
accuracy of our comparative analysis, we present comparisons only
with other (Q)SAR methods that have been subjected to
appropriate cross-validation evaluations. Comparisons between
our Ensemble-Top12 model and other models for reprotoxicity
prediction reported in the literature are presented in Table 3. We
can draw the following conclusions from Tables 1 and 3. (i) The ACC
of the Ensemble-Top12 model is higher than those of the models
previously reported in the literature. In fact, the ACC values of the
NB model (Zhang et al., 2019) and the CAESAR AFP model (Cassano
et al., 2010) are higher than those of Ensemble-Top12. However,
these models consider a limited number of compounds, and a risk
of overfitting exists. For example, significant overfitting exists in
the NB model (Zhang et al., 2019). In addition, the ACC values of the
other models are relatively low. (ii) The Ensemble-Top12 model
achieves the highest AUC value among the models for which the
AUC indicator was used for performance evaluation. (iii) Ensem-
ble-Top12 achieves the highest predictive SPE of 90.19 %. (iv)
Recently, Jiang et al. (Jiang et al., 2019) developed binary
classification models for predicting reprotoxicity using 6 machine
learning methods and 9 molecular fingerprints based on a larger
data set with multiple reprotoxicity endpoints. The performance of
the established best MACCSFP-SVM model was superior to that
obtained in previous studies, which also indicates that it will omit
fewer reproductively toxic chemicals because it can be used to
predict the toxic chemicals causing sperm reduction, gonadal
dysgenesis, abnormal ovulation, teratogenicity, infertility and
odels previously reported in the literature.

a- Validation Method
(s)

ACC
(%)

SEN
(%)

SPE
(%)

AUC Ref.

 LMO 81.60 73.90 88.10 – (Jensen et al., 2008)
 10-fold CV 84.00 95.00 59.00 – (Cassano et al.,

2010)
 LOOCV 88.00 90.00 82.00 – (Cassano et al.,

2010)
 5-fold CV 80.0 81.0 80.0 – (Martin et al., 2011)
 5-fold CV 91.11 93.00 90.00 – (Zhang et al., 2019)

Test set 83.9 87.2 76.5 –

3 10-fold CV 84.90 82.30 87.20 0.915 (Jiang et al., 2019)
Test set 83.60 78.50 88.10 0.900

3 5-fold CV 86.33 82.02 90.19 0.937 Present study
Test set 84.38 77.33 90.67 0.920

alidation; LOOCV, Leave-one-out cross-validation; RF, Random forest; AFP, Adaptive
ector machine; LOAEL, Lowest-observed adverse effect levels; ACC, Accuracy; SEN,
e.



Table 4
Classification results for different classes of compounds by our EnsembleTop12 model.

Category No. of test
compounds

No. of misclassified
compounds

ACC (%) of each
category

No. of positive
compounds

No. of misclassified
positive compounds

No. of negative
compounds

No. of misclassified negative
compounds

Heterocyclic
compounds

113 9 85.25 78 2 35 7

Alicyclic
compounds

34 3 83.78 24 3 10 0

Aromatic ring
compounds

86 14 72.00 37 8 49 6

Open-chain
compounds

125 26 65.56 29 23 96 3

Inorganic
compounds

7 5 16.67 4 3 3 2
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delayed growth. However, it should be noted that the major
limitation of this model was that it was unable to recognize some
compounds, including non-toxic compounds that can cause
reprotoxicity through metabolic activation in vivo and compounds
eliminated in data pre-processing, such as inorganic compounds,
metal organic compounds, mixtures and salts. It is encouraging to
see that our Ensemble-Top12 model achieved better performance
than the MACCSFP-SVM model. The ACC, SEN, SPE and AUC values
obtained by the Ensemble-Top12 model were 1.43 %, 0.03 %, 2.99 %
and 2.2 % higher, respectively, than those of the MACCSFP-SVM
model. As stated above, the results of these comparisons show that
Ensemble-Top12 is an outstanding classification model for
predicting the reprotoxicity of compounds.

3.5. Analysis of classification results of compounds in the test set

The structure of the 365 compounds in the test set was further
analysed to understand the predictive power of our ensemble
model for different classes of compounds (Table S7). We found that
39 out of 172 positive compounds were falsely identified as
Fig. 4. Correctly classified compounds with complex structures and misclassified com
compounds (B), aromatic ring compounds (C) and open chain compounds (D).
negative compounds, and 18 out of 193 negative compounds were
misclassified as positive compounds. Overall, our model shows
excellent predictive ability for cyclic compounds, including
heterocyclic compounds, carbocyclic compounds, and aromatic
ring compounds, but it has relatively weak predictive ability for
open-chain compounds and inorganic compounds (Table 4).
Among the heterocyclic compounds, imidazole, pyridine, piperi-
dine and pyrrole, all belonging to the nitrogen-containing
heteroaromatic compounds, have been reported to be related to
and are often used as structural alerts (SAs) of reproductive toxicity
(Jiang et al., 2019; Chinaza et al., 2014). Consistent with this, our
model also successfully recognized the imidazoles (e.g., imidazole,
nocodazole, 2-heptadecyl-3-hydroxyethylimidazoline), pyrroles
(e.g., 1-ethyl-2-pyrrolidinone), pyridines (e.g., thiacloprid), and
piperidines (e.g., haloperidol) among the positive compounds
(Fig. 4A). Compared with alicyclic compounds with simple rings
(e.g., gabapentin, oxaliplatin, dicyclopentadiene), alicyclic com-
pounds with multiple rings seemed to be more easily classified
correctly (Fig. 4B). For example, the models successfully identified
steroid compounds, such as hydroxyprogesterone acetate,
pounds with simple structures, including heterocyclic compounds (A), alicyclic



Fig. 5. The 10 most important fingerprint features from each RF model trained on six structure-key fingerprints. The statistical values of the MDG index are expressed as the
mean � standard deviation (SD).

Table 5
Descriptions of the 11 top-ranked fingerprint keys and their occurrence among reprotoxicants and non-reprotoxicants.

Fingerprint Key Description SMARTS Pattern Present in Reprotoxicants Present in Non-reprotoxicants MDG

AP2D-726 O-O at topological distance 10 253 57 42.7
EState-13 sssCH [CD3H](-*)(-*)-* 423 237 40.8
EState-12 aaCH [C,c;D2H](:*):* 381 243 36.3
EState-19 ssssC [CD4H0](-*)(-*)(-*)-* 289 134 36.0
KR-2 [!#1][CH]([!#1])[CH]([!#1])[!#1] 262 22 15.0
KR3058 C1CC1 280 48 12.3
MACCS-96 5 M ring *1�*�*�*�*�1 364 66 28.4
Pubchem-143 Presence of any ring size 5 364 66 21.0
FP4�275 Heterocyclic [!#6;!R0] 294 120 32.7
FP4�3 Tertiary carbon [CX4H1]([#6])([#6])[#6] 312 118 30.8
FP4�274 Aromatic a 387 247 27.5
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deoxycorticosterone acetate, and 17-methyltestosterone (Fig. 4B).
Polycyclic aromatic hydrocarbons and phthalates are common
environmental toxic aromatic ring compounds that affect human
reproductive health and cause damage to reproduction, develop-
ment, and hormone secretion (Ramesh et al., 2017; Hlisníková
et al., 2020). Here, our model not only successfully predicted
polycyclic aromatic hydrocarbons as positive compounds, includ-
ing naphthacene (e.g., chlortetracycline hydrochloride, oxytetra-
cycline hydrochloride), anthraquinone (e.g., mitoxantrone
dihydrochloride), and indene (e.g., sulindac, chlorophacinone)
but also recognized phthalates (e.g., ciallyl phthalate, dicyclohexyl
phthalate) (Fig. 4C). In contrast, monocyclic aromatic hydrocarbon
compounds (e.g., toluene, methyl salicylate) and phenol (e.g.,
resorcinol) cannot be correctly predicted (Fig. 4C). Moreover, 23
out of 29 positive compounds with open-chain structures were
misclassified as negative compounds, such as alkanes (e.g., C3�4,
heptane), halogenated alkanes (e.g., bromodichloromethane,
halothane), saturated monocarboxylic acids (e.g., isononanoic
acid), monohydric alcohols (e.g., ethanol) and esters (e.g.,
2-methoxyethyl acrylate) (Fig. 4D). The above results indicate
that compounds with complex structures (e.g., cyclic compounds
with multiple rings) were more easily predicted by the model,
while compounds with simple structures were more likely to be
misclassified because they may lack unique structural features.
Therefore, the predictive performance of our model for these
simple structure open-chain compounds remains unsatisfactory.
Our future research will focus on improving the predictive
performance of these compounds. Finally, it should be noted that
our model cannot recognize inorganic compounds because we
removed inorganic salts during data preprocessing.

3.6. Fingerprint features associated with reprotoxicity

To reveal the contributions of fingerprint features associated
with reprotoxicity, the relative importance (measured as the Mean
Decrease in the Gini coefficient, MDG) of each of these fingerprint
features was evaluated by applying the RF algorithm. In the present
study, 6 structure-key fingerprints, namely, AP2D, Estate, KR,
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MACCS, PubChem and FP4, were used to analyse the importance of
the structural features. We selected the 10 most important features
based on the 10 highest MDG values for each fingerprint (Fig. 5). As
shown in Fig. 5, a total of 11 features were found to have
significantly higher MDG values, indicating that the substructures
represented by these features may be closely associated with the
reprotoxicity of compounds. As shown in Table 5, most of these
features appear in nearly half of the compounds (1458 com-
pounds), revealing which substructures are important in the
prediction process. These fingerprint keys also occur more
frequently in reprotoxicants than in non-reprotoxicants, indicating
that reprotoxicants are structurally different from non-reprotox-
icants and may have many distinctive substructures. Therefore,
although the substructure patterns reported here are very simple
and may not be suitable for the rule-based prediction of
reprotoxicity for the generation of structural alerts (SAs), we
suggest that these substructures should be considered in the early
design of therapeutic compounds.

4. Conclusion

In this study, we used 1823 compounds based on multiple
toxicity endpoints as a training set to establish reproductive
toxicity classification prediction models based on ensemble
learning. First, we used two feature selection methods, namely,
low-variation feature filtering and high-correlation feature filter-
ing with an optimal Tc threshold of 0.95, to remove redundant
features from nine kinds of molecular fingerprints. Then, based on
these 9 types of molecular fingerprints after feature selection, 27
basic prediction models for reproductive toxicity were constructed
using 3 machine learning algorithms, namely, RF, SVM and
XGBoost. These basic models showed high predictive performance,
with ACC and AUC values ranging from 77.1 %–85.9 % and from
0.831 to 0.929, respectively. To further improve the prediction
performance, 27 ensemble models were then developed by
combining subsets of these basic models. Compared with the
basic models, almost all of the ensemble models achieved higher
ACC, SEN, SPE and AUC results, with the Ensemble-Top12 model in
particular achieving an ACC of 86.33 %�0.08 %, a SEN of 82.02 %�
0.15 %, an SPE of 90.19 %�0.11 %, and an AUC of 0.937 � 0.001 on the
training set. The Ensemble-Top12 model also showed the best
prediction performance on the external set, with an ACC of 84.38 %,
a SEN of 77.33 %, an SPE of 90.67 %, and an AUC of 0.920. These
findings indicate that ensemble learning can play a beneficial role
in the prediction of reproductive toxicity and can significantly
improve the ability to predict such toxic compounds. In addition,
based on the Tanimoto distance, we define the applicability
domain (AD) of the ensemble model. Compared with other models,
the Ensemble-Top12 model shows relatively high ACC, SPE and
AUC performance, and it could be used to effectively assess the risk
of reprotoxicity of new drug candidates, especially in the early
stages of drug discovery.
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