Figure S1. Raw screening data for 5-Azacytidine. a. Negative assay in which SARS-CoV-2 E protein is expressed at an elevated level (induced with 100 μM [β-D-1-thiogalactopyranoside]) and is therefore deleterious to bacteria. The different concentrations of the drug are indicated. b. Maximal growth rates obtained in the negative assay. c. Positive assay in which SARS-CoV-2 E protein is expressed at a low level (induced with 20 μM [β-D-1-thiogalactopyranoside]) in K⁺-uptake deficient bacteria [31]. In this instance, inhibitory drugs reduce bacterial growth. d. Maximal growth rates obtained in the positive assay. e. Fluorescence-based conductivity assay. The fluorescence of bacteria that harbor a pH-sensitive GFP [32] and express the SARS-CoV-2 E protein was examined as a function of different chemical concentrations as noted. The experiment was performed as previously described [33], whereby at time 0, a concentrated solution of citric acid was injected into the media. In all panels LB indicates bacteria that do not express the channel as a positive control, while 100 μM IPTG indicates no drug added as a negative control.
Figure S2. Raw screening data for Plerixafor. a. Negative assay in which SARS-CoV-2 E protein is expressed at an elevated level (induced with 100 µM β-thiogalactopyranoside) and is therefore deleterious to bacteria. The different concentrations of the drug are indicated. b. Maximal growth rates obtained in the negative assay. c. Positive assay in which SARS-CoV-2 E protein is expressed at a low level (induced with 20 µM β-thiogalactopyranoside) in K$^+$-uptake deficient bacteria [31]. In this instance, inhibitory drugs reduce bacterial growth. d. Maximal growth rates obtained in the positive assay. e. Fluorescence-based conductivity assay. The fluorescence of bacteria that harbor a pH-sensitive GFP [32] and express the SARS-CoV-2 E protein was examined as a function of different chemical concentrations as noted. The experiment was performed as previously described [33], whereby at time 0, a concentrated solution of citric acid was injected into the media. In all panels LB indicates bacteria that do not express the channel as a positive control, while 100 µM IPTG indicates no drug added as a negative control.
Figure S3. Raw screening data for Mebrofenin. a. Negative assay in which SARS-CoV-2 E protein is expressed at an elevated level (induced with 100 μM [β-d-1-thiogalactopyranoside]) and is therefore deleterious to bacteria. The different concentrations of the drug are indicated. b. Maximal growth rates obtained in the negative assay. c. Positive assay in which SARS-CoV-2 E protein is expressed at a low level (induced with 20 μM [β-d-1-thiogalactopyranoside]) in K⁺-uptake deficient bacteria [31]. In this instance, inhibitory drugs reduce bacterial growth. d. Maximal growth rates obtained in the positive assay. e. Fluorescence-based conductivity assay. The fluorescence of bacteria that harbor a pH-sensitive GFP [32] and express the SARS-CoV-2 E protein was examined as a function of different chemical concentration as noted. The experiment was performed as previously described [33], whereby at time 0, a concentrated solution of citric acid was injected into the media. In all panels LB indicates bacteria that do not express the channel as a positive control, while 100 μM IPTG indicates no drug added as a negative control.
Figure S4. Raw screening data for Mavorixafor. a. Negative assay in which SARS-CoV-2 E protein is expressed at an elevated level (induced with 100 μM \(\beta\)-d-1-thiogalactopyranoside) and is therefore deleterious to bacteria. The different concentrations of the drug are indicated. b. Maximal growth rates obtained in the negative assay. c. Positive assay in which SARS-CoV-2 E protein is expressed at a low level (induced with 20 μM \(\beta\)-d-1-thiogalactopyranoside) in K⁺-uptake deficient bacteria [31]. In this instance, inhibitory drugs reduce bacterial growth. d. Maximal growth rates obtained in the positive assay. e. Fluorescence-based conductivity assay. The fluorescence of bacteria that harbor a pH-sensitive GFP [32] and express the SARS-CoV-2 E protein was examined as a function of different chemical concentration as noted. The experiment was performed as previously described [33], whereby at time 0, a concentrated solution of citric acid was injected into the media. In all panels LB indicates bacteria that do not express the channel as a positive control, while 100 μM IPTG indicates no drug added as a negative control.
Figure S5. Raw screening data for Plerixafor (octahydrochloride). a. Negative assay in which SARS-CoV-2 E protein is expressed at an elevated level (induced with 100 μM [β-d-1-thiogalactopyranoside]) and is therefore deleterious to bacteria. The different concentrations of the drug are indicated. b. Maximal growth rates obtained in the negative assay. c. Positive assay in which SARS-CoV-2 E protein is expressed at a low level (induced with 20 μM [β-d-1-thiogalactopyranoside]) in K⁺-uptake deficient bacteria [31]. In this instance, inhibitory drugs reduce bacterial growth. d. Maximal growth rates obtained in the positive assay. e. Fluorescence-based conductivity assay. The fluorescence of bacteria that harbor a pH-sensitive GFP [32] and express the SARS-CoV-2 E protein was examined as a function of different chemical concentration as noted. The experiment was performed as previously described [33], whereby at time 0, a concentrated solution of citric acid was injected into the media. In all panels LB indicates bacteria that do not express the channel as a positive control, while 100 μM IPTG indicates no drug added as a negative control.
Figure S6. Raw screening data for Cyclen. a. Negative assay in which SARS-CoV-2 E protein is expressed at an elevated level (induced with 100 μM [β-D-1-thiogalactopyranoside]) and is therefore deleterious to bacteria. The different concentrations of the drug are indicated. b. Maximal growth rates obtained in the negative assay. c. Positive assay in which SARS-CoV-2 E protein is expressed at a low level (induced with 20 μM [β-D-1-thiogalactopyranoside]) in K⁺-uptake deficient bacteria [31]. In this instance, inhibitory drugs reduce bacterial growth. d. Maximal growth rates obtained in the positive assay. e. Fluorescence-based conductivity assay. The fluorescence of bacteria that harbor a pH-sensitive GFP [32] and express the SARS-CoV-2 E protein was examined as a function of different chemical concentration as noted. The experiment was performed as previously described [33], whereby at time 0, a concentrated solution of citric acid was injected into the media. In all panels LB indicates bacteria that do not express the channel as a positive control, while 100 μM IPTG indicates no drug added as a negative control.
Figure S7. Raw screening data for Kasugamycin. a. Negative assay in which SARS-CoV-2 E protein is expressed at an elevated level (induced with 100 μM [β-D-1-thiogalactopyranoside]) and is therefore deleterious to bacteria. The different concentrations of the drug are indicated. b. Maximal growth rates obtained in the negative assay. c. Positive assay in which SARS-CoV-2 E protein is expressed at a low level (induced with 20 μM [β-D-1-thiogalactopyranoside]) in K⁺-uptake deficient bacteria [31]. In this instance, inhibitory drugs reduce bacterial growth. d. Maximal growth rates obtained in the positive assay. e. Fluorescence-based conductivity assay. The fluorescence of bacteria that harbor a pH-sensitive GFP [32] and express the SARS-CoV-2 E protein was examined as a function of different chemical concentration as noted. The experiment was performed as previously described [33], whereby at time 0, a concentrated solution of citric acid was injected into the media. In all panels LB indicates bacteria that do not express the channel as a positive control, while 100 μM IPTG indicates no drug added as a negative control.
Figure S8. Raw screening data for Saroglitazar. a. Negative assay in which SARS-CoV-2 E protein is expressed at an elevated level (induced with 100 μM \([\beta\text{-d-1-thiogalactopyranoside}]\)) and is therefore deleterious to bacteria. The different concentrations of the drug are indicated. b. Maximal growth rates obtained in the negative assay. c. Positive assay in which SARS-CoV-2 E protein is expressed at a low level (induced with 20 μM \([\beta\text{-d-1-thiogalactopyranoside}]\)) in K\(^+\)-uptake deficient bacteria [31]. In this instance, inhibitory drugs reduce bacterial growth. d. Maximal growth rates obtained in the positive assay. e. Fluorescence-based conductivity assay. The fluorescence of bacteria that harbor a pH-sensitive GFP [32] and express the SARS-CoV-2 E protein was examined as a function of different chemical concentration as noted. The experiment was performed as previously described [33], whereby at time 0, a concentrated solution of citric acid was injected into the media. In all panels LB indicates bacteria that do not express the channel as a positive control, while 100 μM IPTG indicates no drug added as a negative control.