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Abstract
An important task in the early stage of drug discovery is the identification of mutagenic compounds. Mutagenicity prediction 
models that can interpret relationships between toxicological endpoints and compound structures are especially favorable. In 
this research, we used an advanced graph convolutional neural network (GCNN) architecture to identify the molecular repre-
sentation and develop predictive models based on these representations. The predictive model based on features extracted by 
GCNNs can not only predict the mutagenicity of compounds but also identify the structure alerts in compounds. In fivefold 
cross-validation and external validation, the highest area under the curve was 0.8782 and 0.8382, respectively; the highest 
accuracy (Q) was 80.98% and 76.63%, respectively; the highest sensitivity was 83.27% and 78.92%, respectively; and the 
highest specificity was 78.83% and 76.32%, respectively. Additionally, our model also identified some toxicophores, such as 
aromatic nitro, three-membered heterocycles, quinones, and nitrogen and sulfur mustard. These results indicate that GCNNs 
could learn the features of mutagens effectively. In summary, we developed a mutagenicity classification model with high 
predictive performance and interpretability based on a data-driven molecular representation trained through GCNNs.
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1  Introduction

The importance of compound toxicity prediction in the drug 
discovery process is obvious. The mutagenic potential of 
compounds is one of the safety parameters that should be 
considered [1, 2]. The Ames test, a bacterial assay, is now 
widely used to determine the ability of molecules to cause 
mutations [3, 4]. The Ames test takes only 2 days to gener-
ate results. From the perspective of in vivo experiments, 
the Ames test is the best choice considering its advantages. 
However, it still cannot meet the needs of predicting the 
mutagenicity of a large number of compounds before syn-
thesizing the drug structure. The method of predicting muta-
genicity based on molecular structures has gradually become 
the mainstream method in recent years.

Initially, experts identified mutagenicity by exploring 
the high-quality quantitative structure–toxicity relationship 
(QSTR) of compounds. There are many expert systems for 
mutagenicity prediction, the most representative of which 
are DEREK for Windows [5], Leadscope Model Applier 
(LSMA) [6], CASE Ultra [7–9], and Toxtree [10]. Hillebre-
cht et al. [4] built an Ames mutagenicity dataset containing 
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9681 compounds, which was used to test these systems, and 
the accuracy of these models ranged from 66.4 to 75.4%. 
Subsequently, the automated detection of mutagens has 
become popular. Zhang et al. [11] developed LightGBM 
based on the gradient boosting algorithm. The AUC of the 
model achieved 0.836 in CV and 0.786 in external valida-
tion. Priyanka et al. combined some frequent molecular fea-
tures and machine learning models to develop a tool that can 
predict various toxicity endpoints [12]. The accuracy of the 
mutagenicity prediction model on this platform is 84%. Yang 
et al. [13] developed admetSAR 2.0 by implementing more 
than 40 models for molecular property prediction. Among 
them, the accuracy of the mutagenicity prediction model 
is only 57.3%. The application of neural networks in com-
pound property prediction has been widely used [14–16] and 
has yielded some satisfactory results. The performance of 
the deep neural network (DNN) developed by Dahl is better 
than that of standard random forest (RF) methods with the 
dataset obtained by Merck [17]. Mayr et al. [18] developed 
the multi-task DNN models and won the Tox21 Challenge. 
The feature used for training the model contains many dif-
ferent descriptors, including 3D and 2D descriptors, pre-
defined toxicophores, and extended connectivity fingerprint 
descriptors (ECFPs), so the model can infer self-features 
during training. Koutsoukas et al. [19] found that the per-
formance of DNN was significantly better than that of some 
frequently used machine learning models, such as support 
vector machine (SVM) and RF. These results demonstrate 
that, compared with the conventional machine learning 
methods, the DNN has obvious advantages.

For drug discovery applications, representing molecules 
by encoding their structural information is a major prob-
lem in cheminformatics and machine learning. Molecular 
representations are extremely diverse, and the most widely 
used representations are molecular fingerprints [20]. The 
molecular fingerprints can be regarded as pre-defined struc-
tural fragments [21], such as PubChem fingerprints contain-
ing 881 bits that represent the common substructures [22]. 
The most advanced fingerprints are ECFPs [23], which are 
a modification of the Morgan algorithm [24]. Recently, deep 
learning has become popular in various fields, and it has 
also affected computational chemistry, such as for computer-
aided drug development and molecular property prediction 
[25–28]. Existing deep learning models for drug develop-
ment usually take pre-defined molecular descriptors (mostly 
ECFPs) as input features. However, this approach is not com-
patible with representation learning. Recent deep learning 
focuses more on end-to-end methods. In these methods, the 
molecular representations are directly learned from strings 
or graphs [11, 29]. Bruna et al. [30] used spectral convolu-
tional neural networks (CNNs) on molecular graphs to learn 
molecular features more effectively. Masci et al. proposed a 
convolutional network on non-Euclidean manifolds, which 

is an approach for combining local structure descriptors into 
global descriptors [31]. Duvenaud et al. [32] proposed an 
architecture based on CNN that can generalize fingerprints 
automatically. Goh et  al. [33] developed Chemception, 
which can predict its chemical properties directly through 
2D molecular images. Their work illustrated that this method 
can more accurately predict compound solubility and photo-
voltaic efficiency. Using automatic representations, we can 
develop mutagenicity prediction models without any hand-
crafted rules.

In this study, we built a novel mutagenicity prediction 
model with high predictive performance and interpretabil-
ity based on a data-driven molecular representation trained 
through GCNN architectures. We also investigated the mod-
el’s interpretability and explored the learned fragments in 
this study. We hope that this model could screen potential 
mutagens as soon as possible in the drug discovery process.

2 � Materials and Methods

2.1 � Dataset

In this study, we used two datasets, namely, the training set 
and the external validation set. The model was built through 
the training set, and the generalization performance of the 
model was evaluated through the external validation set. 
The training set was the Ames mutagenicity benchmark 
dataset developed by Hansen et al. [34]. The dataset was 
established in 2009, and recorded the experimental results of 
the Ames mutagenicity test of the compound in the Chemi-
cal Carcinogenesis Research Information System (CCRIS), 
the GeneTox, the VITIC, and three other studies [35–37]. 
In the training set, the chemicals are labeled as positive 
(active) and negative (inactive). To build predictive models 
more robustly, we filtered mixtures, polymers, compounds 
containing heavy metals, and compounds with less than 3 
carbon atoms. Finally, we obtained 6307 compounds in the 
training dataset, including 3407 mutagens and 2900 non-
mutagens, which were used to build the classification.

Additionally, we also constructed an external validation 
dataset, which was used to verify the generalization perfor-
mance of the model in this research. This dataset gathered 
data from the CCRIS database, the National Toxicology 
Program (NTP) database, and Instituto Superiore di Sanita 
Salmonella Typhimurium (ISSSTY) database. To ensure the 
reliability of generalization performance verification, the 
external validation dataset needs to be independent of the 
training set completely. Then, we removed some compounds 
with the same filtering criteria as those in the training set. 
Finally, there were 1383 compounds in the external dataset, 
703 of which were mutagens and 680 of which were non-
mutagens. An overview of the datasets used in this study is 
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provided in Table 1. The compounds in the training set are 
shown in Table S1, and the external set of compounds is 
shown in Table S2.

2.2 � Graph Convolutional Neural Networks

Considering the atoms in the compound as nodes and the 
bonds as edges, the molecule can be regarded as an undi-
rected graph. The GCNN model merges information from 
distant atoms along the direction of the bond. The differenti-
able network layers use this information to generate identi-
fiers for all substructures through adaptive learning, and the 
entire process is learnable. In this manner, useful representa-
tions can be extracted according to the present task.

This model first converts SMILES (Simplified Molecu-
lar Input Line Entry Specification) strings into molecular 
graphs with RDKit [38], which is an open-source chem-
informatics software. SMILES is a specification describ-
ing molecular 3D structures with ASCII strings, which can 

encode molecules into human-readable strings. Then, a fea-
ture vector is assigned to each atom and the bonds attached 
to the atom. In this vector, features of the atom include the 
atom’s element, the atom’s degree, the number of hydrogen 
atoms connected to the atom, the aromaticity indicator, and 
the implicit valence, and the features of the bond include its 
type (single, double triple, or ring), and its conjugation. Con-
sidering the different contributions of neighboring atoms, 
the convolution operation can be performed at different lev-
els, which is implemented through the graph convolutional 
modules consisting of graph convolutional layers, batch 
normalization layers, and graph pool layers. The convolved 
vectors are first aggregated through a fully connected dense 
layer and are then summed to form the final vector. The final 
vector is the neural fingerprint of the compounds, which is 
used to represent the molecules. Finally, the neural finger-
prints are sent to a classification layer to obtain a score that 
provides a value or label indicating compound toxicity. The 
architecture is shown in Fig. 1. The code for this model is 
available at https​://githu​b.com/Liu-Lab-Lnu/Mutag​enPre​
d_GCNNs​.

With the exception of loss function and activity function, 
we optimized these hyper-parameters, which were FPL (length 
of fingerprint), FPD (depth of fingerprint), CKW (width of 
convolution kernel), HLS (number of the hidden units in the 
output layer), L2P (L2 penalty), IWS (scale of initial weight), 

Table 1   Overview of the datasets used in this study

Dataset Source Compounds Positive Negative

Training Hansen et al 6307 3407 2900
External CCRIS, NTP, ISSSTY 1383 703 680

Fig. 1   The process of molecular encoding. First, the input layer 
assigns to each atom a vector of features, and the vectors then go 
through several graph convolutional modules consisting of a graph 
convolutional layer, a batch normalization layer, and a graph pool 

layer. The vectors generated from different convolution operations go 
through a fully connected dense layer and are then summed to form 
the final vector for the compound. Finally, the final vector was fed to 
the classification layers to obtain the predictive result

https://github.com/Liu-Lab-Lnu/MutagenPred_GCNNs
https://github.com/Liu-Lab-Lnu/MutagenPred_GCNNs
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and LRS (learning rate step). We used the Tree of Parzen 
Estimators algorithm (TPE), which is a Bayesian optimiza-
tion method, to search for the hyper-parameters in the GCNNs, 
and the process was implemented by hyper-opt [39], which 
is a Python library for serial and parallel optimization over 
search spaces. We used the TPE to generate 500 sets of hyper-
parameters for the classification models, which means that we 
selected the best hyper-parameters from 500 sets, and all these 
sets were evaluated with fivefold CV. The optimized hyper-
parameters and their ranges are shown in Table S3. The entire 
process of hyper-parameter optimization is also presented in 
Table S4.

In the optimization process, we had fixed the loss function 
and the active function to indicate mean square error (MSE) 
and rectified linear unit (ReLU), respectively. After the opti-
mization, the following hyper-parameters were finally used in 
this study: FPL of 64, FPD of 4, CKW of 99, HLS of 240, L2P 
of e−1, IWS of e−2, and LRS of e−8.

2.3 � Performance Evaluation

There may be a risk of overfitting when different sets of hyper-
parameters are evaluated. To avoid this problem, we adopted 
fivefold CV to evaluate the performance of these models. Spe-
cifically, the training set was randomly split into five parts of 
equal size, four parts of which were used to train the model, 
and the remaining part of which was used to evaluate the 
model. Thus, we obtained five models and indicators. Further-
more, to avoid the influence of random factors on the results, 
we repeated this process 10 times. Therefore, we obtained 
50 performance indicators for each set of hyper-parameters. 
These 50 indicators were averaged to evaluate the performance 
of each model. The final models were also validated with an 
external validation dataset to evaluate the generalization per-
formance of the models.

The model was evaluated with the following four indica-
tors: Q, SPC, SEN, and AUC. Q is an indicator that measures 
the overall prediction accuracy of models. SPC measures the 
predictive accuracy for negative data, and SEN measures the 
predictive accuracy for positive data. These three indicators 
can be calculated from the numbers of true positives (TP), true 
negatives (TN), false positives (FP), and false negatives (FN). 
The indicators were calculated as follows:

Q =
TP + TN

TP + TN + FP + FN
× 100%

SPC =
TN

TN + FP
× 100%

SEN =
TP

TP + FN
× 100%.

Compared with Q, AUC has become a more widely used 
performance evaluation metric for the binary classification 
model, because it is less affected by the threshold.

3 � Results and Discussion

In this study, we built a novel mutagenic classification model 
using molecular representations generated by a GCNN. The 
training dataset for building the model was the benchmark 
dataset, which contained 6307 compounds. In the process of 
building the model, we searched for hyper-parameters with 
the hyper-opt in the fivefold CV.

3.1 � Performance of the Models

In the process of searching for hyper-parameters, 500 models 
were generated with different topological networks, and in 
these models, different hyper-parameters caused large dif-
ferences in AUC values in CV (0.8009–0.8807). The top 10 
models with the highest AUC values in CV were selected 
(Table S5).

After completing the selection of hyper-parameters, all 10 
sets evaluated by fivefold CV were selected and stored for 
external predictions with 10 repeats of well-trained weights. 
The test results in the fivefold CV are shown in Table 2. Of 
these values, the AUC, Q, SEN, and SPC in the test set were 
between 0.8759 and 0.8782, 80.37% and 80.98%, 82.28% 
and 83.27%, and 77.89% and 78.83%, respectively, indicat-
ing good predictive power. Furthermore, CM_4 (classifica-
tion model 4) had the highest AUC (0.8782), Q (80.98%), 
and SEN (83.27%), indicating that CM_4 had the best pre-
dictive ability.

The external validation set contained 1383 compounds, 
which were used to evaluate the generalization perfor-
mance of the model. Since these compounds were not used 
for model construction, these compounds can be used to 
evaluate the model’s ability to predict the mutagenicity of 

Table 2   Performance of the top 10 models in the CV

Model AUC​ Q (%) SEN (%) SPC (%)

CM_1 0.8768 80.68 83.09 77.89
CM_2 0.8762 80.37 82.36 78.09
CM_3 0.8774 80.67 82.28 78.83
CM_4 0.8782 80.98 83.27 78.34
CM_5 0.8774 80.79 82.91 78.35
CM_6 0.8768 80.73 82.42 78.78
CM_7 0.8761 80.56 82.77 78.00
CM_8 0.8772 80.65 82.96 77.98
CM_9 0.8759 80.56 82.80 77.98
CM_10 0.8774 80.67 82.28 78.83
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new compounds. As shown in Table 3, the AUC, Q, SEN, 
and SPC of these top 10 models for external validation 
are between 0.8248 (CM_9) and 0.8382 (CM_1), 75.25% 
(CM_4) and 76.63%(CM_1), 75.78% (CM_3, CM_4, and 
CM_10) and 78.92% (CM_7), and 72.65% (CM_9) and 
76.32% (CM_8), indicating that the GCNN models can 
label the new mutagens. The ROC curves of the 10 models 
in the training process (Fig. 2a) and the external validation 
process (Fig. 2b) also demonstrate that the performance 
of these models in external validation was lower than that 
in the CV. These results indicate that our model is slightly 
overfitting, which is a problem that needs to be addressed 
in our future work.

3.2 � Comparison with Previous Methods

In the present study, we compared the results of an objective 
performance assessment of some existing models with our 
models for mutagenicity prediction. Four of them are com-
mercial models, which are DFW, LSMA, CASE Ultra, and 
Toxtree. The comparison result with commercial models is 
summarized in Fig. 3a, which shows that the model in this 
study achieved the highest accuracy of 80.98%. Toxtree has 
the highest SEN (85.2%), but the SEN of our model differs 
only slightly (1.9%) from that value. Compared with Tox-
tree, our model has a higher Q and SPC, and these results 
mean that our model has a better predictive ability and can 
also identify non-mutagens more accurately. Additionally, 
we also compared the performance of some machine learn-
ing prediction models with ours. The comparison results 
are shown in Fig. 3b. AdmetSAR and ProTox-II are freely 
available web servers, which are based on the machine learn-
ing models for the prediction of various toxicity endpoints. 
Xu et al. [40] combined five different molecular finger-
prints (CDK fingerprints, Estate fingerprints, MACCS keys, 
PubChem fingerprints, and Substructure fingerprints) and 
five different machine learning algorithms (SVM, C4.5 deci-
sion tree, artificial neural network, k-nearest neighbor, and 
naïve Bayes). In Xu’s paper, the best model was the SVM 
trained on PubChem fingerprints, so we adapted this model 
in Fig. 3c. Furthermore, none of these models are trained 
on the benchmark dataset. SVM-ECFP and SVM-FP7 are 
trained on ECFP fingerprints and fingerprints extracted from 
GCNNs, which are implemented by us. The SVM is trained 
on 10 deep fingerprints, which are extracted from CM 1 to 
CM 10 from Table 2. Notably, all performances in Fig. 3 are 

Table 3   Performance of the top 10 models in external validation

Model AUC​ Q (%) SEN (%) SPC (%)

CM_1 0.8382 76.63 78.77 74.41
CM_2 0.8345 75.54 78.21 72.79
CM_3 0.8321 75.69 75.78 75.59
CM_4 0.8274 75.25 75.78 74.71
CM_5 0.8364 75.69 76.07 75.29
CM_6 0.8339 76.19 77.78 74.56
CM_7 0.8315 75.83 78.92 72.65
CM_8 0.8344 76.48 76.64 76.32
CM_9 0.8248 75.62 77.07 74.12
CM_10 0.8321 75.69 75.78 75.59

Fig. 2   The ROC curve of the top 10 models. a The ROC curve during the training process of these 10 models. b The ROC curve during the 
external validation process of these 10 models
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the results of CV. From Fig. 3b, it is obvious that the SVM 
trained on fingerprints generated by GCNNs is better than 
others in CV, which means that the fingerprints generated 
by GCNNs perform better than PubChem and ECFP in CV. 
This phenomenon suggests that the GCNNs extracted useful 
substructures from the training data.

3.3 � Construction of Conventional Classification 
Models with Extracted Deep Fingerprints

In this part, we evaluated whether the conventional machine 
learning models could make accurate predictions based on 
the fingerprints generated by GCNNs. We extracted the deep 
fingerprints generated by the GCNNs and developed some 
conventional machine learning models to suggest that the 
features learned by our models were effective. In this study, 
we used SVM, RF, KNN, and XGBoost as examples. To 

study this effect, we extracted deep fingerprints from the 
well-trained GCNNs, and transferred the entire data set 
into a matrix to featurize and vectorize the compounds. The 
matrix for the dataset, 6307 (number of compounds) * 64 
(number of features), was regarded as inputs for SVM, RF, 
KNN, and XGBoost. The conventional machine learning 
models were implemented by the scikit-learn package [41]. 
The parameters of conventional machine learning meth-
ods were searched through a grid search implemented by 
the scikit-learn package, and the search process was also 
evaluated by the fivefold CV. The hyper-parameters and the 
ranges needed to be tuned are shown in Table S6, and the 
values are also shown. The models were also evaluated by 
fivefold CV and external validation. Finally, we summarize 
the parameter search results and the validation results of 
these conventional machine learning models. In the main 
manuscript, we take the SVM as an example, which is shown 
in Table 4, and the other models are shown in Table S7 to 
Table S9.

The AUC values in CV and external validation were 
between 0.9223 and 0.9502 and between 0.8106 and 0.8265, 
respectively. SVM_FP7 had the best AUC, 0.9502, in five-
fold CV, but SVM_FP1 had the best AUC of 0.8265 in the 
external set. In both fivefold CV and external validation, 
the AUC values were greater than 0.8, which means that 
the SVM developed with deep fingerprints can classify the 
mutagens correctly. This means that the deep fingerprints 
generated by our models were effective. Moreover, we devel-
oped these traditional machine learning models via ECFPs, 
which were calculated with RDKit. The hyper-parameters of 
these models have also been tuned specifically. Compared 
with the same model prediction based on ECFP, however, we 
found that the performance of deep fingerprints was lower 
in external validation. The phenomenon cannot prove that 
the deep fingerprints are invalid, but illustrates that the gen-
eralization ability of deep fingerprints is weaker than that 
of ECFPs.

3.4 � Analysis of Structural Alerts of Mutagens

In this section, the exploration of the fingerprints generated 
by the GCNNs further verified the effectiveness of GCNNs 
and showed the potential of GCNNs to predict mutagens 
and reveal the toxicophores. We verified the toxicophores 
found by GCNNs with confirmed toxicophores. We pre-
dicted the molecules in the external validation dataset with 
different machine learning models. In the external validation 
set, 390 molecules were correctly predicted by all models. 
There are 29 molecules, and only GCNN provided the cor-
rect prediction results. After the prediction, we clustered 
the molecules and compared them with the structure alerts 
(SAs) in ToxAlerts (TAs) [42] manually. Kazius et al. [35] 
discovered eight different substructure representations. At 

Fig. 3   Performance of the model in this study (CV) and some exist-
ing models. a The performance of the model in this study and some 
commercial models. b The performance of the models in this study 
and some machine learning models
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least 70 mutagens were detected in their dataset with these 
eight substructure representations, with an accuracy of over 
70%. These eight substructures are the general toxicophores. 
The prediction results demonstrated that the GCNN model 
could identify the general toxicophores recorded in the TAs, 
such as aromatic nitro (TA321), three-membered heterocy-
cles (TA323), azo-type (TA326), and polycyclic aromatic 
system (TA328), as shown in Fig. 4a. Among these SAs, 
the TA321 is a symbolic toxicophore for mutagenicity, 
and the mutagenic mechanism of compounds containing 
TA321 has also been explained and verified. The TA323, 
TA326, and TA328 are similar to existing toxicophores [43, 
44]. Additionally, the TAs have also reported 19 specific 

toxicophores derived from the general toxicophores but that 
are more complex [35]. The GCNNs can identify not only 
the general SAs but also the specific SAs, such as quinones 
(TA369), nitrogen and sulfur mustard (TA344), and alkyl 
esters of phosphonic or sulphonic acids (TA426). The mol-
ecules with these SAs are shown in Fig. 4b. Chesis et al. 
detected the mutagenicity of TA369 in the TA104 Salmo-
nella test strain [45]. TA344 possessed significant intrinsic 
reactivity, and it was proven to be a specific toxicophore 
[35]. Furthermore, Ashby et al. classified TA426 as positive 
by structural criteria [46, 47]. As shown in Fig. 4c, some 
molecules without recorded SAs are labeled correctly, which 
means that our GCNNs may identify some SAs that have not 

Table 4   Performances and 
parameters of SVM with deep 
fingerprints and ECFP

a Performance in cross-validation
b Performance in external validation

Model C Gamma AUC-CVa AUC-EXTb Q-CVa Q-EXTb

SVM-FP1 100 0.01 0.9394 0.8294 87.09 76.63
SVM-FP2 1000 0.001 0.9475 0.8272 88.11 75.69
SVM-FP3 10 0.01 0.9484 0.8230 87.82 74.38
SVM-FP4 10 0.01 0.9453 0.8242 87.60 75.54
SVM-FP5 10 0.01 0.9467 0.8285 87.78 75.47
SVM-FP6 10 0.01 0.9271 0.8325 85.89 76.41
SVM-FP7 10 0.01 0.9526 0.8247 88.74 75.83
SVM-FP8 10 0.01 0.9274 0.8282 85.67 76.12
SVM-FP9 100 0.01 0.9392 0.8226 87.00 75.76
SVM-FP10 10 0.01 0.9405 0.8235 87.03 75.40
SVM-ECFP 1 0.1 0.8766 0.8659 81.75 79.88

Fig. 4   The SAs of mutagens in the external validation dataset. a The mutagens are predicted correctly by the models. b The mutagens were 
labeled correctly by the GCNNs and with SAs recorded in TAs. c The mutagens labeled correctly by the GCNNs without SAs recorded in TAs
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been associated with mutagenicity. This phenomenon dem-
onstrates that our GCNNs may help to identify mutagenicity 
SAs without in vivo experiments. Considering the sensitivity 
of our models to the existing SAs, our model can provide the 
basis for some new, unknown SAs.

4 � Conclusion

This study employed a GCNN-based architecture to repre-
sent the molecular structures and applied it to the task of 
compound mutagenicity prediction. Compared with reported 
classification models, the CM_4 model exhibited outstand-
ing performance (AUC of 0.8782, Q of 80.98%, SEN of 
83.27%, and SPC of 78.34% in CV).

In addition to the predictive capability, this paper focused 
on the interpretability of these models. In this study, deep 
fingerprints extracted from the classifiers were able to sup-
port conventional machine learning classification models 
very well. General SVM, RF, KNN, and XGBoost models 
using these deep fingerprints had outstanding AUC (0.9526, 
0.9268, 0.9426, and 0.9472, respectively) and Q (88.74%, 
85.90%, 87.30%, and 87.98%, respectively) values in CV. 
In addition, we also investigated the activation fragments. 
Compared with the toxic fragments reported in other stud-
ies, we found that these deep fingerprints are very similar to 
them. Considering the success of the GCNNs in molecular 
mutagenicity prediction, it can be foreseen that GCNNs are 
also very promising in other toxicity prediction tasks.
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