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SUMMARY

The pH-controlled M2 protein from influenza A is
a critical component of the virus and serves as a target
for the aminoadamantane antiflu agents that block its
H+ channel activity. To better understand its H+ gating
mechanism, we investigated M2 in lipid bilayers with
a new combination of IR spectroscopies and theory.
Linear Fourier transform infrared (FTIR) spectroscopy
was used to measure the precise orientation of the
backbone carbonyl groups, and 2D infrared (IR)
spectroscopy was used to identify channel-lining
residues. At low pH (open state), our results match
previously published solid-state NMR and X-ray
structures remarkably well. However, at neutral pH
when the channel is closed, our measurements indi-
cate that a large conformational change occurs that
is consistent with the transmembrane a-helices
rotating by one amino acid register—a structural rear-
rangement not previously observed. The combina-
tion of simulations and isotope-labeled FTIR and 2D
IR spectroscopies provides a noninvasive means of
interrogating the structures of membrane proteins
in general and ion channels in particular.

INTRODUCTION

The M2 protein has become a model system for understanding

the H+ gating mechanism of ion channels. M2 assembles into

tetramers with a single a-helical transmembrane domain (Duff

and Ashley, 1992; Holsinger and Lamb, 1991). Following viral

internalization, at the low pH of the endocytic vesicles, histidine

residues in the transmembrane domain of M2 are thought to

protonate, thereby activating the protein (Pinto et al., 1992;

Wang et al., 1995). Upon opening of M2, the viral lumen acidifies,

which facilitates the release of the viral contents into the cell. This

critical step in the infectious cycle of the virus renders M2 an

important target for antiflu agents, such as amantadine. Finally,

M2 is particularly amenable to structural analyses because

a peptide that encompasses its transmembrane domain faith-

fully represents its tetramerization, H+ channel, and drug-binding

activity (Duff et al., 1992; Hu et al., 2006, 2007; Salom et al.,
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2000). As a result, it has been possible to structurally charac-

terize the M2 peptide both by solid-state NMR (ss-NMR) (Nishi-

mura et al., 2002) and X-ray crystallography (Stouffer et al.,

2008). Therefore, the objective of our study was to characterize

the structural transition that the M2 channel undergoes upon

gating. Toward this end we have employed, and quantitatively

assessed, a novel combination of 1D and 2D infrared (IR) spec-

troscopies, along with calculations, that is particularly suited for

this challenging task: probing the structure and dynamics of

membrane proteins in their native environments.

Our approach relies on a combination of linear dichroism

measurements and 2D IR lineshape analysis, which are largely

enabled by site-specific isotope labeling. Because isotope

labels do not perturb protein structures, they can be placed in

sterically confined locations, such as the channel lumen of

membrane proteins (like we do herein) that may not tolerate

electron spin resonance or fluorescence probes. Moreover, 2D

IR spectroscopy holds especially important promise for following

the structural kinetics of membrane proteins. Finally, all of these

IR measurements are conducted in the protein’s native environ-

ment: the lipid bilayer.

The M2 channel is an ideal system to assess the accuracy of

our IR methodology because it is structurally well characterized

(Nishimura et al., 2002; Stouffer et al., 2008). The utility of our

approach is underscored by the results of this study. We discov-

ered that the M2 channel undergoes a large structural rearrange-

ment upon gating that has not been previously detected and

which has implications for the drug and gating mechanism of

this important drug target.

RESULTS AND DISCUSSION

Properties of Isotope Labels
The experimental approach that we have taken relies on linear

dichroism measurements and 2D IR lineshape analyses. To

gain site-specific structural information, we used 1-13C = 18O

labels to spectroscopically isolate individual residues (Torres

et al., 2000a, 2001). 13C = 18O labeling creates a �60 cm�1 shift

in the amide I band, which largely decouples it from the remain-

ing unlabeled amide I modes (Mukherjee et al., 2006a; Fang and

Hochstrasser, 2005). As a result, it can be treated as an isolated

vibrational mode whose frequency is influenced mostly by its

immediate surroundings and that has a transition dipole inde-

pendent of the rest of the peptide structure. The unlabeled amide
–254, February 13, 2009 ª2009 Elsevier Ltd All rights reserved 247
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I band that remains after isotope labeling contains significant

structural information, and isotope editing can be used to help

unravel its structural content. However, in what follows we focus

on the labeled modes themselves.

Linear FTIR Dichroism Reveals Structural Differences
between Low and High pH
The dichroisms that we have measured by attenuated total reflec-

tion Fourier transform infrared (ATR-FTIR) spectroscopy are of

Figure 1. Results of the Linear FTIR Spectroscopy Measurements

(A) Sequence of the M2 transmembrane peptides used in all analyses. The

black coloring signifies the 1-13C = 18O-labeled amino acids.

(B) Representative ATR-FTIR spectra of the M2 peptide in lipid bilayers

focusing on the isotope-edited band of the amide I mode. The spectra were

collected with parallel or perpendicular polarized light, black, and light gray

curves, respectively. Spectra of all labels are shown in Figure S2.

(C) A comparison between the tilts of the transition dipole moments of the

amide I mode derived from the FTIR studies at acidic (light gray) or neutral

pH (gray), and those determined from the X-ray (black; Stouffer et al., 2008)

and ss-NMR (dark gray; Nishimura et al., 2002) structures.

(D) Schematic diagram of the orientation of the transition dipole moment of the

amide I mode relative to (i) the amide group’s molecular frame according to

Torii and Tasumi (1992) and to (ii) the bilayer normal, given by the angle q.
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amide I vibrational modes of individual carbonyl groups in aligned

bilayers. These data are then converted into the angles between

the transition dipole moments of the labeled carbonyl groups and

the bilayer normal. Because the orientation of the transition dipole

moment of the amide I mode relative to the molecular frame is

known (Torii and Tasumi, 1992), such dichroism measurements

yield the angle between the bilayer normal and the carbonyl

group (see Figure 1D). Thus, henceforth we refer to our measure-

ments as yielding the angle between the bilayer normal and the

C = O bond. The precise procedures for deriving the aforemen-

tioned angle is according to protocols that we have established

in the past (Manor et al., 2005) and are outlined in Supplemental

Data available online. Briefly, the process consists of (i) reconsti-

tuting the labeled channels in hydrated vesicles, (ii) removing bulk

solvent while depositing the membranes on a solid support to

create aligned bilayers, (iii) measuring the dichroism using ATR-

FTIR spectroscopy, (iv) assessing the bilayer disorder by X-ray

scattering (Figure S1) and, finally, (v) converting the measured

dichroisms to the angles of the carbonyl groups with respect to

the membrane normal. We followed this procedure for ten resi-

dues spread along the length of the peptide (as listed in

Figure 1A) at acidic (pH 4) or neutral/basic conditions (pH 7 to

9) in which the channel is open or closed, respectively (Pinto

et al., 1992).

To demonstrate how sensitive the dichroisms are to the

carbonyl orientations in the bilayer, the FTIR spectra of Ala30

and Leu43 are shown in Figure 1B (FTIR spectra of all labeled

peptides are shown in Figure S2). The dichroisms at acidic condi-

tions of Ala30 and Leu43 are 18 ± 8 and 1.4 ± 0.2, respectively.

These measurements in turn correspond to dramatically different

angles of the carbonyl groups of Ala 30 and Leu43 from the

membrane normal of 21� ± 4� and 64� ± 5�, respectively.

The accuracy of our method is assessed by a comparison of the

angles we determined using IR spectroscopy at acidic conditions

to the ss-NMR (Nishimura et al., 2002) and X-ray structures

(Stouffer et al., 2008). A remarkably good agreement with the

previously determined structures is observed (compare the light

gray with the black and dark gray bars in Figure 1C). The average

discrepancy is 6� ± 6� and 7.6� ± 5� between the IR-derived angles

and the X-ray and ss-NMR structures, respectively. The angular

differences between the ss-NMR and X-ray data are 3.2� ± 2�.

Angular data may be used to construct the backbone struc-

tures of proteins by an orientational refinement procedure (Nish-

imura et al., 2002). Rather than using a flexible peptide model

and allowing the dihedral angles to vary for every residue, we

have taken a conservative approach and fit our IR bond angles

to a rigid helix. The angular refinement consisted of rotating

and tilting the helix from the membrane normal and computing

the angular deviation from our data, which is plotted in Figure 2

(top). The minimum deviation occurs for a helix tilted by 27� and

rotated by 290�. Despite the fact that the peptide was treated as

an ideal helix, this configuration is in close agreement with the

structures previously determined by ss-NMR (Nishimura et al.,

2002) and X-ray crystallography (Stouffer et al., 2008), with a

backbone RMSD between individual helices of 2.4 Å and 2.5 Å,

respectively. For comparison, the backbone RMSD between the

ss-NMR and X-ray structures is 2.8 Å. Thus, we conclude that the

dichroisms provide a quantitatively reliable way of characterizing

the backbone structure of membrane proteins.
l rights reserved
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2D IR Reveals a Shift in the Channel’s Pore-Lining
Residues
We next collected 2D IR spectra of the same ten isotopically

labeled carbonyl groups using a photon echo pulse sequence

at acidic conditions. An example of a 2D IR spectrum for Ile33

is shown in Figure 3A (spectra of all labeled peptides are pre-

sented in Figure S3). The isotope label appears near

1590 cm-1 and is highlighted with a gray arrow in the magnitude

spectra. We found in our previous work on the CD3z trans-

membrane peptide (Mukherjee et al., 2004, 2006a, 2006b)

that the diagonal linewidths of membrane peptides reflect the

Figure 2. Rigid-Body Refinement of the M2 Protomer according
to the FTIR-Derived Angles

Each point in the graph represents a particular combination of tilt and rotation

angles for an ideal helix. The gray scale represents the difference per residue

(in angles) that the structure has relative to the angles derived from the FTIR

study (Figure 1C). The white squares represent the helix tilt and rotation combi-

nations that resulted in the smallest deviation form the experimental results.

The white circle represents the tilt and rotation of the helices of the X-ray struc-

ture (Stouffer et al., 2008).
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disorder of their surrounding electrostatic environments and

that one of the biggest factors is the carbonyl’s contact with

water, which changes the amount of inhomogeneous broad-

ening (Fang and Hochstrasser, 2005; Fang et al., 2006; Zheng

et al., 2007). Because M2 is a transmembrane bundle like

CD3z, we expect that the diagonal linewidths will scale with

the depth of the residue in the bilayer as the lipid tails only

weakly interact with the peptide backbone. To extract the line-

widths from the data, we followed the same procedure as for

CD3z (Mukherjee et al., 2004, 2006a, 2006b) and fit the spectra

to a sum of 2D lineshapes. The resulting homogeneous and

inhomogeneous linewidths are given in Tables S1 and S2, as

are population relaxation times, which were measured by col-

lecting a series of 2D IR spectra as a function of the waiting

time in the pulse sequence. Each peptide was independently

measured and fit at least three times to ensure the reproduc-

ibility of our results and to estimate error bars (a total of

60 2D IR spectra were collected for this study). Details of the

fitting procedure, fits to the data, and error estimates are pre-

sented in Supplemental Data.

The diagonal linewidths of each amide carbonyl are plotted in

Figure 3B (see Figure 3A, top, for a representative linewidth

measurement of Ile33). As expected from our studies on CD3z

(Mukherjee et al., 2004, 2006a, 2006b), residues at the ends of

the peptide near the membrane interface have the largest diag-

onal linewidths, whereas residues in the middle of the membrane

have the narrowest linewidth, because the diagonal linewidths

scale with the environmental electrostatics. In addition, we also

find that the 2D IR linewidths are sensitive to water inside the

channel pore. This effect is best observed at the N-terminal

end of the peptide, where we were able to label five consecutive

residues (Leu26 to Ala30) so that the linewidth of every amino

acid was measured for 1.5 turns of the helices. The data in this

range reveal an oscillatory trend in linewidths, and comparison

with the X-ray structure (Stouffer et al., 2008) shows that the line-

widths correlate very well to the location of the residue in the

helix. This correlation is highlighted in Figure 3B, where the posi-

tions of residues relative to the channel lumen are shown. For

example, the inhomogeneous linewidth of Ala30 located at the

channel lumen is higher than the linewidth of Ala29 located in

the protein-protein interface. Leu36 has the narrowest linewidth

because it is both in the middle of the bilayer and on the outside

of the bundle.

Molecular Dynamics Simulation of the Pore-Lining
Residues Reveals a Similar Picture
To further substantiate our observation that the linewidths indi-

cate which residues line the channel pore, we have simulated

2D IR linewidths from a molecular dynamics trajectory. To

accomplish this simulation, we equilibrated the X-ray crystal

structure of M2 (Stouffer et al., 2008), assuming that three of

the His37 residues are protonated (Hu et al., 2006; Chen

et al., 2007), in a hydrated lipid bilayer, followed by a 1 ns

molecular dynamics production trajectory. In calculating the

spectra, because the amide I modes are isotopically labeled

to create a substantial diagonal frequency shift (�60 cm�1;

Torres et al., 2000a, 2001), it is not necessary to include explicit

coupling to the unlabeled C = O modes. We calculated the

projection of the electric field onto the M2 amide groups at
–254, February 13, 2009 ª2009 Elsevier Ltd All rights reserved 249
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Figure 3. Results of the 2D IR Spectroscopy Measurements

and the Molecular Dynamics Simulations

(A) 2D IR spectra of Ile33 at acidic (left) and neutral (right) conditions. The

isotope-labeled peak appears at 1690 cm�1 and is highlighted with an arrow.

(Top) Slices along the diagonals of the 2D IR spectra are shown along with

a slice through the fit to the labeled peak that highlights the measured diagonal

width (full fitting procedures and data sets are given in Supplemental Data).
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each step in the simulation. The electric fields were then con-

verted into frequencies using a correlation map to give

a frequency trajectory, which is used to calculate the 2D IR

spectra (Lin et al., 2009). The details of this procedure are given

in Supplemental Data. The simulated linewidths of the 2D IR

magnitude spectra are shown in Figure 3C. Like the experi-

ment, the calculated linewidths are largest at the terminal

ends and narrowest in the middle, which reflect the water

content in the membrane. Furthermore, residues 27, 30, and

33 have broad linewidths, consistent with their presence in

the pore of the channel. Thus, while not in quantitative agree-

ment, the simulations support the experimental observation

that the linewidths reflect which residues line the channel

pore. From the simulations and experiment, we conclude that

the phase of the oscillatory trend is a measure of the rotational

angle of the helices with regard to the channel pore.

Having established the information content of our 1D and 2D

IR approach using a well-characterized protein structure, we

turned to studying the structural changes associated with

channel gating by performing the same experiments at

neutral/basic conditions when the channel is in its closed state

(Pinto et al., 1992). We find that many of the residues change

their linewidths, as shown for Ile33 in Figure 3A (all of the 2D

IR data and fits are given in Figures S3–S5). At neutral condi-

tions, the largest linewidths are still observed at the ends of

the helices, and the narrowest in the middle, indicating that

the structure of the closed channel lies at about the same depth

as when it is open. However, the phase of the oscillation

between residues Leu26 and Ala30 is now shifted by about

one residue (see Figure 4, top panel). For instance, Ala30,

which had a very large linewidth because it was located inside

the pore in the open state, now has a linewidth that is compa-

rable to the narrow linewidths of dehydrated residues on the

outside of the bundle. In contrast, Ala29 shows the opposite

trend, indicating that it is exposed to a much stronger electro-

static environment in the closed state in comparison to the

open state, strongly suggesting that it has become hydrated.

In comparison, the C-terminal end shows little difference in

linewidths between the closed and open states. This may be

due to the fact that the protein forms a cone-shaped structure

in which the N terminus is well packed and the C-terminal

segment forms fewer protein-protein contacts (Stouffer et al.,

2008). Thus the accessibility to water of individual residues at

the C terminus is already high and therefore does not depend

on their rotational position. Taken together, the most straight-

forward interpretation of the 2D IR linewidth changes is that

the helices rotate by one amino acid register upon channel acti-

vation, such that the channel is lined by different sets of resi-

dues in the open and closed states.

(B) Diagonal linewidths extracted from the 2D IR spectra of the ten measured

residues at acidic (black triangles) and basic (gray circles) conditions. The

positions in the helix bundle of the labeled group (carbonyl oxygen in dark

gray), which correlate with the 2D IR data, were taken from the X-ray structure

(Stouffer et al., 2008). The data are presented in a numerical format in Tables

S1 and S2, which includes error bars.

(C) Calculated diagonal linewidths from molecular dynamics simulations of the

M2 peptide in lipid bilayers. Note the increased linewidths at residues 27, 30,

and 33, which are the residues that line the channel pore. Error bars in the

calculations are given in Table S3.
ll rights reserved
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Figure 4. Visualization of the Proposed Gating Mechanism

(Top) The location of residues Val27–Ala30 in our models of the closed and open conformations of the M2 channel. Note the different rotational location of the

residues that is consistent with the 2D IR data shown in Figure 3.

(Bottom) Slices through the M2 tetrameric complexes constructed according to the FTIR derived angles at the two pH conditions. The location of the labeled

carbonyl group (underlined residues), are shown in CPK representation.
Large Angular Changes Observed between the Two pH
Conditions Imply a Large Conformational Change,
Simulated by Rigid-Body Refinement
To gain a more detailed insight into this structural change, we

turned back to our 1D dichroism measurements, which we

repeated at neutral conditions. The extracted angles between

the labeled C = O groups and the bilayer normal are shown in

Figure 1C (gray bars). We find substantial changes in the

carbonyl angles from acidic to neutral conditions, especially at

residues Leu26, Ala30, and Ala33, where the angles change

by >30�, indicating large structural changes in the helices. It is

important to realize that an observed change in the angle

between a carbonyl bond and the bilayer normal mandates

a structural change of the protein. However, a lack of a change

in the carbonyl bond angle does not mean that a structural

change did not occur, because a single carbonyl group’s projec-

tion on the membrane normal does not restrain a structure

unambiguously. We also note that it is merely a geometrical coin-

cidence that the angles measured for the closed channel do not

exhibit the extent of variation that was observed for the open

channel.
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To quantify the structural change that accompanies gating,

we once again employed rigid-body refinement, rotating and

tilting the helix to make a new refinement map based on the

angles collected at neutral conditions. The new map, shown in

Figure 2 (bottom) has a minimum at the same tilt angle (28�),

but with a rotational angle that is 129� different from the config-

uration obtained at acidic conditions. Thus, according to both

the 1D and 2D IR data sets, the helices conserve their tilt but

undergo a large rotation, suggesting that the channel pore is

lined by a number of different residues at acidic conditions

compared with neutral state. Specifically, if under acidic condi-

tions residue number i lines the pore, at neutral conditions,

residue i + 1 faces the pore. Finally, we note that the discrep-

ancy between the experimental results and the refinement

model of the closed channel is higher than that of the open

channel. In Figure S6, we plot the errors for the individual resi-

dues and find that the overall error is not larger because of

a single residue, but is generally larger for all of the residues.

This might indicate that the approximation of an ideal helix is

a better assumption in the open state than in the closed state.

Regardless, this structure is not in agreement with the ss-NMR
–254, February 13, 2009 ª2009 Elsevier Ltd All rights reserved 251
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or X-ray-derived M2 bundles, because the helices are rotated

by 100� to 130�.

Fully Constructed Model Reveals the Properties
of the Open and Closed States, Supporting
the Rotation by One Amino Acid Register
To better understand the pore structure and the gating move-

ment that we observed, we constructed the tetrameric complex

from the optimized helices at the two pH conditions. Our IR data

do not currently yield distance constraints between the helices,

which are necessary to reliably construct the ion channel from

four individual helices. We therefore constructed the channel

complex using the interhelical distances measured in the X-ray

structure (Stouffer et al., 2008). Thus, the helices are constrained

at the tilt and rotations predicted by our data, translated to

proper relative distances, and the side-chains were allowed to

relax. Slices through the two complexes, which include a surface

representation looking at the channel from the N terminus, are

shown in Figure 4. At neutral conditions, we find that the channel

is closed, and at acidic conditions the channel is open, consis-

tent with physiological results (Pinto et al., 1992). Thus, a gating

mechanism that is coupled to rotational motion of the helices can

explain our results.

The points of contact that seemingly close the channel in

neutral conditions are Asp24 and Val28. Asp24 is one of the

most conserved residues in the channel, and together with

His37 they are the only ionizable residues in the membrane

vicinity. Therefore it is tempting to speculate that both His37

and Asp24 undergo a change in protonation state upon channel

activation. Under acidic conditions, His37 would be charged and

water accessible, whereas Asp24 would be neutral and poten-

tially water inaccessible. Under neutral conditions the reverse

will transpire, leading to exposure of Asp24 and sequestration

of His37. Interestingly, that is exactly what we observe in our

model shown in Figure 4. Further experimentation is needed to

substantiate this hypothesis.

Other membrane proteins undergo rotational motion upon

gating. For example, the pore-lining helices of the acetylcholine

receptor are thought to rotate upon binding acetylcholine,

although the extent of rotation is still under debate (Law et al.,

2005; Miyazawa et al., 2003; Sansom, 1995). Similarly, both the

large and small conductance mechanosensitive channels from

E. coli contain helices that are thought to undergo significant rota-

tion upon activation (Bartlett et al., 2006; Edwards et al., 2005).

Finally, thiol-disulfide equilibria mapping (Stouffer et al., 2008) as

well as ss-NMR experiments (Bauer et al., 1999; Tian et al., 2003;

Li et al., 2007) suggest that the M2 sequence is particularly tuned

toward reduced stability that may accompany large motions.

Based on these findings, we conclude the following: (i) Our

low pH results, both in terms of hydration and orientational data,

are highly consistent with the previously available structures

determined by either ss-NMR (Nishimura et al., 2002) or X-ray

crystallography (Stouffer et al., 2008). (ii) Both our 1D and 2D IR

data sets consistently point to a large structural reorganization

between acidic and neutral pH, leading to a structure that is

significantly different from published ss-NMR (Nishimura et al.,

2002) and X-ray (Stouffer et al., 2008) structures.

An important strength of our approach is that we are able to

study membrane proteins in the natural environment of a lipid
252 Structure 17, 247–254, February 13, 2009 ª2009 Elsevier Ltd A
bilayer and, because of the high sensitivity of IR spectroscopy,

at near-physiological protein-to-lipid ratios (<1:20 by weight).

As a result, we can ascertain the accuracy of structures obtained

by X-ray crystallography or ss-NMR, which are performed in

detergent micelles or at high protein-to-lipid ratios. The ability

to double-check structures in bilayers is important because

detergents can alter the energetics and structures of the trans-

membrane helices, as was documented for human glycophorin

A and EmrE (Fisher et al., 1999, 2003; Soskine et al., 2006).

In this study, we find that the structures determined by

ss-NMR (Nishimura et al., 2002) and X-ray crystallography

(Stouffer et al., 2008) are structurally accurate as compared

with our structure, but only if those experiments examined the

channel in its open state, not the closed state. High protein-to-

lipid ratios, or detergents, as discussed previously, could cause

this discrepancy, but it could also be caused by a difference in

pH, as the pH is responsible for gating in M2. pH can be difficult

to maintain in samples with reduced hydration, like that used in

ss-NMR, and unknown in crystal structures, especially because

heavy metals used in crystallization may act as acids. But now,

with 1D and 2D IR spectroscopies, it is possible to provide an

independent check on the structures of proteins using backbone

hydration and conformation data. The ability to probe hydration

levels in ion channels without structural perturbation is particu-

larly appealing, especially because 2D IR lineshapes can be pre-

dicted from molecular dynamics simulations (Schmidt et al.,

2004; Choi et al., 2005; la Cour Jansen et al., 2006; Zhuang

et al., 2006), as we demonstrated here.

In summary, we have found that a pH change induces a large-

scale conformational change in the channel structure. Though

our results might be explained by a number of possible structural

changes, the 2D IR linewidths suggest that the channel pore is

lined by a different set of residues in the open and closed states.

Moreover, this change is highly consistent with our angular

constraints derived from linear FTIR spectroscopy. This change

has implications for the binding of amantadine or other drugs to

the channel, as a change in residues will change the size and

hydrophobicity of the channel. During the course of these exper-

iments, we have also demonstrated the utility of infrared spec-

troscopy to quantitatively and qualitatively assess the structure

of a membrane peptide channel. These methodologies might

find use on other ion channel systems or be applied in a time-

resolved manner to study membrane protein dynamics.

EXPERIMENTAL PROCEDURES

Linear FTIR Spectra

The synthesis, labeling, purification, and lipid reconstitution of the peptides

used in this work have been described elsewhere (Torres et al., 2000a,

2000b) and are specified in detail in Supplemental Data. Similarly, the ATR-

FTIR spectroscopy and the X-ray scattering, bilayer mosaicity estimation

were undertaken as described elsewhere (Manor et al., 2005; Torres et al.,

2000b) and are specified in detail in Supplemental Data.

2D IR Spectra

The experimental procedure for collecting heterodyned 2D IR spectra is given

in detail elsewhere (Fulmer et al., 2004) and described in Supplemental Data.

To extract the 2D lineshape of the labeled amide I mode, we follow our

previously established fitting procedure of using the Fourier transform of the

third-order response in the limit of Bloch dynamics with a pure dephasing

time of T2* and an inhomogeneous distribution of D0 (Mukherjee et al., 2004).
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pH Control

The pH control in our experiments was conducted as follows. In the ATR-FTIR

work, HCl, NaOH, and PBS were used to bring the solution to a final pH of 4, 7,

or 9, respectively. The pH was monitored throughout the entire process,

including during the removal of the bulk solvent from the sample before

measuring the FTIR spectra, and was found to change only marginally in all

three preparations. The three different conditions had no visible effect on the

FTIR spectra. HCl-treated preparation is addressed as low pH samples

throughout this work, whereas PBS- or NaOH-treated preparations are

addressed as neutral/basic pH samples. No differences in the results were

obtained between preparations with PBS or NaOH. In the 2D IR work, the vesi-

cles resided in excess water. For the closed-state measurements, the pH was

checked by blotting a small amount on pH paper. For the open state, the

sample was buffered to pH 5.

SUPPLEMENTAL DATA

Supplemental Data include Supplemental Experimental Procedures and

References, six figures, and three tables and can be found with this article on-

line at http://www.cell.com/structure/supplemental/S0969-2126(09)00033-1.
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