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Abstract: Within 1 or 2 decades, the reputation of membrane-spanning a-helices has changed
dramatically. Once mostly regarded as dull membrane anchors, transmembrane domains are now
recognized as major instigators of protein–protein interaction. These interactions may be of
exquisite specificity in mediating assembly of stable membrane protein complexes from cognate
subunits. Further, they can be reversible and regulatable by external factors to allow for dynamic
changes of protein conformation in biological function. Finally, these helices are increasingly
regarded as dynamic domains. These domains can move relative to each other in different
functional protein conformations. In addition, small-scale backbone fluctuations may affect their
function and their impact on surrounding lipid shells. Elucidating the ways by which these intricate
structural features are encoded by the amino acid sequences will be a fascinating subject of
research for years to come.

Keywords: transmembrane helix; dynamics; interaction; assembly; membrane protein

Introduction
Integral membrane proteins comprise 25–30% of all
proteins in the proteomes of organisms from every
kingdom of life and thus form an inexhaustible play-

ground for the researcher. Single-span, bitopic pro-
teins range from growth factor receptors, adhesion
proteins, SNAREs to T-cell receptor subunits, and so
forth, whereas multispanning, polytopic proteins
include structurally more complex receptors, trans-
porters, and channels. Studying membrane protein
structure and assembly has made it clear that interac-
tions and dynamics of the a-helical transmembrane
domains (TMDs) play a crucial role in their folding,
assembly, and function. Various aspects around
this topic have been covered by excellent recent
reviews.1–18

Interactions of TMDs are experimentally investi-
gated with a variety of biochemical and biophysical
methods including gel shift assays, analytical ultracen-
trifugation, fluorescence resonance transfer, disulfide
exchange, as well as genetic approaches with bacterial
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two-hybrid or split enzyme systems (reviewed in Refs.
13 and 18–20). TMD–TMD assembly is also suggested
by the patterns of residue conservation during evolu-
tion. Specifically, TMDs of bitopic proteins are
more conserved than the remainder of the protein and
conservation is restricted to one side of the helix.21

With polytopic proteins, sequence variation is higher
where TMD helices face the lipid bilayer than at helix–
helix interfaces,22 a finding that has been used by
several groups as a powerful constraint in molecular
modeling.23,24 Further, single-spanning membrane
proteins are more tolerant to mutation in comparison
to multispanning proteins, where most TMDs contact
multiple helices.25,26 Together, this reflects con-
servation of amino acids at the sites of TMD–TMD
packing and highlights their importance for specific
interaction.

Currently, we only have a rudimentary under-
standing of the mechanisms that ensure specificity of
TMD–TMD interactions and avoidance of promiscuous
ones. Known TMD–TMD interfaces from bitopic pro-
teins often contain common interaction motifs, such
as GxxxG,27–32 polar amino acids including Asn, Gln,
Asp, His,33–35 or Trp,19 or more complex patterns such
as Ser/Thr-clusters36 and QxxS-motifs.37 Further, dif-
ferent residues and patterns can cooperate within the
same TMD. For example, the GxxxG-motif can occur
in tandem, like in the Alzheimer A4 protein,38,39 be
extended to an HxxxxxxGxxxG-motif in the BNIP
TMD32,40 and related sequences41 or form FxxGxxxG-
motifs.42

Further variation is found in the oligomerization
outcome itself: transmembrane helices are capable of
dimerization,27 trimerization,43,44 tetramerization,45 or
pentamerization.46 Also, assembly can be homotypic
or heterotypic,14,47 certain TMDs can interact via alter-
nate interfaces,17 and some exhibit more than one
interface in a complex, rendering it janus-headed.48,49

The rich diversity of transmembrane helix association
in terms of mechanisms and outcomes is in no doubt
a consequence of their biological importance.

Like their water-soluble counterparts,50 mem-
brane proteins appear to exist in a hierarchy of confor-
mational substates that cover different time scales and
molecular dimensions. Rigid-body motions of individ-
ual TMDs relative to each other51–53 are seen upon
activation of bitopic and polytopic proteins and fre-
quently underlie signal transduction after ligand bind-
ing or conformational changes leading to substrate
transport. At more subtle levels, TM-helices may be
subject to bending at hinge regions,54 undergo small-
scale vibrational motions of their backbones,55–57 and
exhibit side-chain rotations.58 As the occupation of dif-
ferent substates, and the speed of structural transitions
between them are intrinsically linked to function,
membrane proteins must be stable enough to retain
their structure, yet flexible enough to rapidly switch
between inactive and active conformations.

Here, we will discuss some recurrent patterns
found in TMD–TMD interfaces, their energetics, the
emerging concept of their dependence on sequence
context, and regulation of interaction (see Fig. 1). We
will then review computational approaches developed
to predict these structures. Finally, we will end with a
discussion on the functional relevance of the dynamics
of TMD-helices and how other molecules may regulate
their interactions and dynamics.

Structure of TMD–TMD Interfaces
To date, the structures of about 150 nonhomologous
polytopic membrane proteins have been solved. In a
simplified model, transmembrane helices cross each
other either at positive crossing angles (where interfa-
cial residues adopt an [a..de.g]n heptad repeat pattern)
or at negative angles (characterized by an [ab..]n tetrad
repeat)5,29,59 [Fig. 2(A)]. Interestingly, a recent rigor-
ous structural classification of TMD–TMD pairs from
polytopic proteins revealed that about 2/3 of them fall
into only four structural clusters, that is, antiparallel
and parallel helices with a limited range of crossing
angles that is dictated by the nature of side-chain
interactions.60 This suggests a limited conformation
space for TMD–TMD pairs, as predicted based on geo-
metrical considerations.61 However, it has to be borne
in mind that the remaining third of these pairs corre-
spond to additional conformations with more varied
crossing angles and irregularities in helix structures
(mostly wide or tight helical turns that are often asso-
ciated with kinks).62 The same broad structural classi-
fication seems to hold true for TMD–TMD assemblies
from bitopic proteins as indicated by high-resolution
structures30–32,63–66 and scanning mutagenesis.40,67–71

Energetics of TMD–TMD Interaction
Three different kinds of noncovalent interactions are
thought to contribute toward stabilization of protein
structure: ionic interactions, hydrogen bonds, and
van der Waals interactions. Yet, one must remember
that the anisotropic, hydrophobic environment of the
lipid bilayer is dramatically distinct from the isotropic

Figure 1. Factors that are known to regulate TMD–TMD

interaction.
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hydrophilic setting in which water-soluble proteins re-
side. Hence, one cannot readily extend our consider-
able knowledge regarding the forces that hold water-
soluble proteins together into the membrane milieu.
For example, hydrophobic collapse, a major driving
force to water-soluble protein folding, most likely can-
not play a major role in the stabilization of membrane
proteins.

Could the opposite, that is, hydrophilic collapse,
be the force that holds membrane proteins together?

In this ‘‘reverse micelle’’ topology, the protein shields
polar residues from the apolar membrane by seques-
tering them in its core. Subsequently, any electrostatic
interaction (salt-bridges and H-bonds) that takes
place between the shielded hydrophilic residues is
predicted to be highly favorable because of the low
dielectric environment of the lipid bilayer. Uncertainty
exists whether a reverse micelle topology is statisti-
cally significant amongst known membrane protein
structures, because polar residues are uncommon in

Figure 2. Approaches and outcomes in screening combinatorial libraries for high-affinity TMDs. (A) Outline of library

construction and screening. (B) Recurrent motifs as identified from different libraries where different interfacial residue

patterns had been randomized with different sets of amino acids on different invariant host backgrounds. X, helix/helix
crossing angle; aa, amino acid. The presence of GxxxG motifs in high-affinity TMDs suggests that the corresponding helix–

helix pairs have negative crossing angles, even though a heptad repeat pattern underlying left-handed pairs had been

randomized. In other words, parts of the heptad pattern can potentially form interfaces of right-handed structures.
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the core of membrane proteins.72 Yet, as elaborated
later, even in instances where polar residues are found
in the core of membrane proteins, their contribution
toward protein stability is debatable.73 It is notewor-
thy, however, that polar substitutions are the most
common mutations in membrane proteins that cause
disease.16

Because salt-bridges are scarce in membrane
proteins, researchers have attempted to gauge the
importance of H-bonds toward stability. A consistent
picture does not arise yet. For example, several stud-
ies have shown a substantial contribution by H-
bonds formed by Asn residues on the dimerization of
designed bitopic proteins33,34,67,74 (further discussion
on the participation of polar residues in oligomeriza-
tion is presented later). In contrast, recent studies
have shown only modest stabilization of a designed
bitopic membrane-spanning leucine zipper75 or of
the polytopic bacteriorhodopsin73 by side-chain H-
bonds. Finally, the location of polar residues in
membrane proteins has been used by several groups
to rotationally position a transmembrane helix. This
is based on the argument that the polar side chains
will interact more favorably with the core of the pro-
tein, in comparison to the hydrophobic lipid
bilayer.76,77

In addition to polar side chains, several groups
proposed that the CaAH group is capable of participat-
ing in hydrogen bonding.78 In other words, the mar-
ginal polarity of the Ca proton might be sufficient to
serve as an H-bond donor in a highly hydrophobic
environment. However, experimental assessment of
the strength of this H-bond did not converge to a sin-
gle answer. Specifically, the effect upon stability of a
single CAH!!!O¼¼C bond in bacteriorhodopsin was esti-
mated by mutagenesis in detergent micelles to be in-
significant.79 In contrast, FTIR spectroscopy in lipid
bilayers was able to measure directly the enthalpy of a
similar H-bond in glycophorin A to be 0.88 kcal/
mol.80

Taken together, one is faced with a conundrum:
On the one hand, it is possible to engineer H-bonds
that contribute significantly toward transmembrane
protein stability,33,67,68,74,81 as expected from electro-
static arguments. Yet on the other hand, such electro-
static interactions do not seem to be prevalent in
membrane proteins.

Several different reasons were brought forth73,82

to account for the above conundrum: (i) strong elec-
trostatic interactions may be deleterious to protein
function because of their potential lack of specificity.
(ii) Such strong interactions may hinder conforma-
tional flexibility that may be essential to protein func-
tion. (iii) Finally, precise geometric positioning may be
required for optimal stabilization of H-bonds. Thus,
electrostatics may not universally stabilize TMD–TMD
interactions, but rather it will cooperate with van der
Waals forces, aromatic interactions, and so forth, in

ways that depend on the individual case as discussed
in the sections later.

Modeling Integral Membrane Assembly
Helical membrane proteins are far more accessible to
the protein modeler in comparison to their water-solu-
ble counterparts. This is due to the fact that the lipid
bilayers dramatically reduce the number of degrees of
freedoms that a protein can adopt. Thus, one can
attempt to exhaustively search the conformational
space of a transmembrane helix bundle, whereas an
exhaustive search of water-soluble configurations is at
this point exceedingly difficult. Moreover, the topology
of helical membrane proteins can normally be ascer-
tained with some certainty by hydropathy analysis. In
contrast, determining the topology of a water-soluble
protein requires tedious structure elucidation. Thus, it
should be of no surprise that approaches to model
transmembrane helix–helix interactions are common
in the community. Finally, a recent study has shown
that knowledge-based modeling methods that have
been developed for water-soluble proteins, work
equally well on membrane proteins.83 Thus, one can
model membrane proteins with methods that have
been developed for water-soluble proteins, as well as
methods that are uniquely suited to model membrane
helical bundles.

It is beyond the scope of this report to present a
comprehensive review of membrane protein modeling.
However, it might be instructive to mention one cate-
gory of modeling methods that is unique to membrane
proteins that relies on exhaustive searching, and has
been shown to be particularly useful. Brunger and
coworkers have pioneered an approach to model mem-
brane proteins based on global-searching molecular
dynamics.84,85 In this method, a helical bundle is
exhaustively permutated by iteratively rotating and
tilting the helices relative to the bundle axis. The sta-
bility of each conformer is then tested by a short mo-
lecular dynamics trajectory in vacuum. Clustering of
all the conformations is undertaken to determine if
modeling of a particular region of structure space has
been particularly successful. One can analyze symmet-
ric homo-oligomers by adjusting the rotation of all the
helices concomitantly or hetero-oligomers by combina-
torial rotations. In practice, although it is possible to
exhaustively search the conformation space of a homo-
oligomer, it remains to be seen how effective this pro-
cedure is in the analysis of hetero-oligomers The afore-
mentioned approach has been shown to be useful in
predicting several plausible structures.86–90 One then
uses experimental data, such as mutagenesis, to select
the ‘‘correct structure.’’84,85 Alternatively, silent substi-
tution modeling can be used to select the correct
structure based on the premise that ‘‘silent mutations,’’
as identified by sequence alignment, might be able to
discriminate between the correct structures and
outliers.91
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More recently, the aforementioned approach has
been extended to analyze different helical bundles by
molecular dynamics simulation in hydrated lipid
bilayers.92 It remains to be seen if analyzing structures
in membranes are preferable to a more exhaustive
search in vacuum. Finally, Kruger and Fischer93 have
recently presented a similar approach of exhaustive
geometric searching. In their approach, the authors
first conducted molecular dynamics simulation in
hydrated lipid bilayers of individual helices. Subse-
quently, the configuration space was searched exhaus-
tively by assembling helical bundles and assessing the
energetics of each bundle.

Recurrent Motifs in High-Affinity
TMD–TMD Interfaces
The TMD–TMD interface of the homodimeric glyco-
phorin A, an erythrocyte protein of unknown function,
has been the first to be investigated in detail.27,28,94–97

Its structure gives rise to a negative crossing angle as
implied by molecular modeling85,98 and confirmed by
nuclear magnetic resonance studies in detergent30 and
membranes.31 This interaction is dominated by a
GxxxG motif that is central to the TMD–TMD inter-
face.27,28,99–103 The glycophorin A TMD–TMD interac-
tion is apparently driven by a complex mixture of
attractive forces and entropic factors.104 The GxxxG
motif may drive assembly by the formation of a flat
helix surface that allows for multiple van der Waals
interactions to form. In addition, the entropy loss
upon association is considered minimal for Gly and
the neighboring Val residues.105 Moreover, the Gly res-
idues reduce the distance between the helix axes and
thus may facilitate hydrogen bond formation between
their Ca-hydrogens and the backbone carbonyl of the
partner helix.106 The GxxxG motif was identified as
such when the residue spacing between both Gly resi-
dues was found to be critical and GxxxG induced
homomerization of model TMDs.100

The early work on glycophorin A TMD assembly
was particularly rewarding because the GxxxG motif
and degenerate versions thereof (designated ‘‘small-
xxxsmall’’ or ‘‘GxxxG-like’’ with Gly exchanged for Ala,
Ser, Cys, etc.) were found in many other cases later,
including syndecans,70,107 members of the BNIP fam-
ily,32,40,108 protein tyrosine phosphatases,109 viral en-
velope proteins,110 growth factor receptors,64,111 integ-
rins,14,112–115 and the Alzheimer precursor
protein.38,39,116 These motifs are also important in he-
lix–helix interfaces of polytopic proteins that prefer
Gly, Ala, and Ser.60,117–121 It is clear, however, that
numerous TMDs interact without involvement of the
GxxxGmotif, as exemplified by SNARE proteins,69,122–124

E-cadherin,125 the erythropoietin receptor,68,126–128 cyto-
chromes,129 andmany others.

The mechanisms underlying TMD–TMD interac-
tions are explored in a systematic ab initio approach
by selection of self-interacting TMDs from combinato-

rial libraries holding randomized TMD sequen-
ces.105,130 Selection of high-affinity TMDs requires an
experimental system where their interaction results in
a selectable phenotype. The ToxR transcription activa-
tor system has been developed for this purpose28 and
exploits the fact that self-interaction of ToxR-embed-
ded TMDs within the inner membrane of expressing
E. coli reporter strains enhances the expression of
chloramphenicol resistance. The ToxR system exists in
two versions used for library screening for homotypic
interactions, TOXCAT96 and POSSYCCAT.130 It has
been modified to investigate heterotypic interactions
in a dominant-negative fashion.41,131,132 The beauty of
the library screening approach is that interfacial con-
sensus motifs can be identified ab initio by alignment
of selected sequences and comparison to unselected
ones. These motifs can be characterized in detail by
mutational analysis to uncover the structural basis of
helix–helix interaction. Moreover, database searching
with these motifs leads to testable predictions of simi-
lar motifs in natural membrane proteins. The outcome
of individual screens depends on whether tetrad or
heptad motifs are randomized, on the hydrophobicity
of invariant amino acids, and on the complement of
codons used for the variant ones. Figure 2(A) illus-
trates the general strategy, whereas Figure 2(B) sum-
marizes the results obtained so far.

In one such study, randomization of a tetrad
repeat pattern yielded high-affinity GxxxG motifs in
over 80% of all isolates,105 thus underpinning the role
of this motif in TMD–TMD interactions. Indeed, data-
base searching identified the GxxxG motif as the most
prevalent pairwise motif in TMDs.42,133,134 Overrepre-
sentation of GxxxG relative to statistical expectation
demonstrates that its presence supports protein func-
tion in evolution.

If randomization is done without codons that
encode Gly, SxxSSxxT and SxxxSSxxT motifs emerged.
Mutational analysis of these motifs indicated that their
contribution to TMD–TMD interaction is based on
multiple hydrogen bonds between these hydroxylated
residues.36

In other library screens, GxxxG of high-affinity
TMDs were frequently associated with Phe or His,
depending on the randomization strategy. Phe was fre-
quently associated with GxxxG motifs and has a
strongly stabilizing role at the i-3 position, thus yield-
ing FxxGxxxG motifs. This motif, and a number of
derivatives with different Phe/Gly spacings, is overre-
presented in TMDs of natural bitopic membrane pro-
teins suggesting their functional relevance.42 One can-
didate TMD identified by the database search
corresponds to the Vesicular Stomatitis Virus G-pro-
tein, and mutational analysis confirmed the relevance
of the consensus motif for its self-interaction.42 Inter-
action of this TMD has also been demonstrated by
mass spectrometry to persist in the gas phase if the
corresponding peptide is ionized from the a-helical
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state.135 The role of the GxxxG part of the FxxGxxxG
motif might be to orient the Phe residues such as to
promote aromatic–aromatic interactions. Alternatively,
the first Gly of GxxxG could interact with the Phe resi-
due of the partner helix via a CaAH!!!p interaction
known to be prevalent in soluble protein cores.136

Albeit weak, these CaAH!!!p interactions could be sta-
bilized by the low dielectric environment of mem-
branes as discussed earlier.

Enrichment of His residues was seen in another
library screen that yielded high-affinity TMDs prefer-
entially displaying Gly, Ser, and/or Thr residues at
positions i-4 and i-1 relative to His. The sequences
with the highest affinities also contained a C-terminal
GxxxG, which results in a [G/S/T]xx[G/S/T]
HxxxxxxGxxxG consensus pattern.41 Mutational analy-
ses confirmed the importance of these residues in
homotypic interaction. Probing heterotypic interac-
tions indicated that His residues interact in trans with
hydroxylated residues suggesting that hydrogen bonds
and possibly aromatic interactions stabilize the inter-
face. Reconstruction of minimal interaction motifs on
an oligo-Leu sequence supported the idea that His is
part of a hydrogen-bonded cluster that may be
brought into register by a distant GxxxG,41 whereas
isolated His residues support the assembly of the
model TMD much less efficiently.34 This exemplifies
one case where precise geometric positioning may be
required for optimal stabilization of hydrogen bonds.
Database searching yielded only few candidate TMDs
holding this motif one of which corresponds to
the previously well-investigated BNIP3 TMD. BNIP3
is a Bcl-2 family proapoptotic protein that initiates
hypoxia-induced cell death. The BNIP3 TMD
forms a homodimer characterized by the motif
SHxxAxxxGxxxG40,108 and its NMR structure con-
firmed these interfacial residues in the right-handed
pair.32 The BNIP3 TMD–TMD interface thus corre-
sponds to one variant of the consensus motif identified
in a library screen.

Yet another library screen yielded TMDs where
Trp residues prevail at g positions of the randomized
heptad motif. Mutation of Trp residues reduced self-
interaction and grafting Trp residues onto artificial
TMDs strongly enhanced their affinity.137 A contribu-
tion of aromatic residues is also implied by the over-
abundance of WxxW and YxxY motifs in bacterial
TMDs and mutational analysis of one candidate TMD
that belongs to the cholera toxin secretion protein
EpsM confirmed that WxxW, YxxW, WxxY, YxxY, and
single Trp residues support its self-interaction.138 A
stabilizing role of aromatic–aromatic interactions in
the order F > Y # W was seen in a model study that
also suggested that cation-p interactions between aro-
matics and Arg, Lys, or His residues strongly enhance
TMD–TMD affinity.139 Apart from stabilizing noncova-
lent TMD assembly, aromatic side-chains also contrib-
ute to the folding stability of membrane proteins

through interactions with the lipid head-group regions,
as exemplified by the E. coli outer membrane protein
OmpA.140

Context Dependence of Interfacial
Motifs and the Evolution of
Membrane Protein Function
Despite the observation that simple motifs, such as
GxxxG, are part of many TMD–TMD interfaces, it is
clear that the mere presence of such motifs does not
reliably predict high-affinity interaction. This is exem-
plified by the fact that GxxxG is highly effective within
the contexts of oligo-Met and oligo-Val sequences,100

but not within a number of randomized TMDs42 or
the M13 major coat protein TMD.141 Screening combi-
natorial TMD libraries for high-affinity sequences
yielded GxxxG motifs whose relative positions and
nearest neighbors depended on whether invariant Leu
or Ala residues were used.105 Also, the interaction
energy of the glycophorin A TMD varies over a wide
range after mutation of the sequence surrounding
GxxxG.103 Similarly, GxxxG present within the erbB2
receptor TMD lies outside the closely packed part of
the helix–helix interface.64 It thus appears as if the
precise packing within a given interface modulates the
role of GxxxG. This is not too surprising given the fact
that 12.5% of all TMDs within nonredundant data-
bases of bitopic proteins contain GxxxG.42,134 To avoid
promiscuous homo- and heterotypic interactions
between these TMDs, GxxxG motifs have to be placed
within appropriate structural contexts where they may
enter long-range communication with other resi-
dues142 and high-affinity TMDs holding GxxxG may
be regarded as islands in sequence space. Screening
combinatorial TMD libraries has identified some of
these islands by showing that GxxxG can form high-
affinity interfaces with appropriately spaced Phe42 or
clusters of His and polar/small residues41 as men-
tioned earlier.

Similar arguments apply to polar residues (Asn,
Asp, Gln, Glu, His) that drive association of model
TMDs.34,35,67,143 Because $25% of all bitopic protein
TMDs contain at least one of these residue types, their
existence would be expected to induce unspecific
assembly in the membrane.144 That this danger is a
real one, is highlighted by a number of disease-causing
mutations where polar residues may constitutively
activate function by causing TMD–TMD interaction.
For example, the neu tyrosine kinase receptor is acti-
vated by a substitution of V664 within its TMD for
Glu145 that appears to induce permanent receptor
dimerization by interhelical hydrogen-bond forma-
tion.146 Likewise, mutating S498 of the thrombopoie-
tin receptor TMD to Asn rendered this receptor consti-
tutively active,147 and mutation of T617 to Asn within
the granulocyte colony-stimulating factor receptor
TMD, as found in patients with acute myeloid leuke-
mia, conferred growth factor independence148 (for
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more complete lists of disease-causing TMD muta-
tions, see Refs. 16 and 149). On the other hand, polar
residues did not induce TMD–TMD interaction in a
number of other natural proteins.144,150

Taken together, it appears that evolution of
TMD–TMD interfaces, which are associated with bene-
ficial gains of protein function, depends on coevolution
of critical sequence hot spots, such as GxxxG or polar
residues, and of surrounding residues. This context de-
pendence may ensure that high-affinity interfaces
evolve much slower than anticipated on the mere basis
of the codon statistics of the residues that make up the
hot spots.

Rigid-Body Motions of TMDs in Dynamic
Membrane Proteins
Apart from stable TMD–TMD interactions, as in pro-
tein oligomerization, many TMDs enter dynamic asso-
ciations that are subject to regulation by ligands, other
proteins, or the membrane proper. In bitopic proteins,
TMDs may interact reversibly by translational move-
ment within the bilayer plane, rotate relative to each
other, or undergo even piston motions [Fig. 3(A)].
These motions frequently transmit a ligand-binding
event at extracellular domains across the bilayer to in-
tracellular domains, thus activating a variety of signal-
ing cascades (reviewed in Refs. 16 and 17). A few
model proteins will be discussed here to illustrate the
point.

Reversible interactions involving translational
movement are proposed to regulate the adhesive func-
tion of integrins.154,155 There, heterotypic TMD–TMD
interactions between a set of a and b subunits—as
implied by biochemical and computational stud-
ies86,89,112,156 as well as by a recent NMR structure—157

are displaced in favor of homotypic interaction71 dur-
ing activation.158 It is the reversibility of TMD–TMD
interactions that make integrin function controllable
by the addition of exogenous TMD peptides. In an ele-
gant combination of computational and experimental
approaches, novel TMD peptides were designed that
compete with integrin heteromerization in a sequence-
specific way, and thus activate the protein.132,159 Simi-
lar approaches have been developed for other mem-
brane proteins (reviewed in Refs. 14 and 16).

Rotation of TMDs relative to each other is a con-
cept that appears to supersede the more traditional
idea of ligand-induced dimerization of growth factor
receptors. There is now substantial evidence that these
receptors can exist as preformed dimers that are

Figure 3. Dynamics of membrane-embedded protein

domains. (A) The activation of bitopic proteins upon binding

of soluble ligands to extracellular domains has been

proposed to involve the reorientation of transmembrane

helices relative to each other about their long axis,

reversible association/dissociation, and piston movements.

(B) A comparison of X-ray structures of bovine rhodopsin

and opsin reveals that TM5 elongates and moves closer to

TM6 in the ligand-free and Ga-peptide (shown as space-

filling representation) associated states when compared

with the dark-adapted form containing cis–retinal (shown in

orange).51,151,152 TM6 and TM7 are shown in green for

better orientation. (C) A comparison of closed and open

states of the small mechanosensitive channel MscS from

E. coli indicates a large rearrangement of TMDs upon

channel activation.153 The representations of the full

structures permit a view down the pore; TM1 and TM2 of

subunit A are in yellow and TM3 is in green for better

orientation. The blow-up underneath the full structures

shows the rearrangement of TM3 from subunits A and B

after channel activation. Interfacial residues are in gray.
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stabilized by TMD–TMD interactions. Receptor activa-
tion seems to involve TMD rotation in response to
ligand-binding to extracellular domains, in case of
erythropoietin,160 epidermal growth factor,161 and
growth hormone162 receptors. Interestingly, the
arrangement of TMDs can also be influenced by direct
binding of hydrophobic ligands. For example, the
thrombopoietin receptor was activated by a synthetic
compound that required a TMD His residue.163,164

Also, modeling studies suggest that the TMD of the
erbB2 tyrosine kinase is able to rotate between two
dimerization motifs, thereby controlling the activity of
the protein.165

Changing the electrostatics between TMDs is an
another way to change their relative orientation. The
homotetrameric M2 protein from influenza A forms a
proton channel that is blocked by the anti-viral drug
amantadine166 and is activated by lowering the pH. Its
TM-helices cross each other at positive angles as indi-
cated by earlier functional,167 biochemical,168 and
modeling169 work. Recently, high-resolution structures
of M2 have been solved,65,66 and molecular model-
ing170 suggests that His protonation promotes channel
gating although how exactly a pH change opens the
pore remains unknown. Recently, linear and 2D-IR
spectroscopic studies have provided evidence that is
consistent with a rotation of the helices about their
long axis upon pH change.171 This rotational change is
on the order of one amino acid register and may pro-
vide a molecular picture of channel gating.

Activation of polytopic membrane proteins fre-
quently involves rearrangement of TMDs within multi-
helical bundles, which we illustrate here by discussing
some recent findings. For example, G-protein coupled
receptors (GPCRs) exist in equilibrium between antag-
onist-bound inactive and agonist-bound active states,
where diffusible ligands bind within the TM-helix bun-
dle. Recent work has produced a number of GPCR
structures that mostly represent the inactive conforma-
tion, as exemplified by adrenergic receptors crystal-
lized in the antagonist-bound state.81,172–174 New struc-
tures of the retinal pigment rhodopsin provide
structural information on the kind of conformational
changes associated with protein activation [Fig. 3(B)].
Although earlier rhodopsin structures151 contain cis–
retinal and thus represent the inactive, dark-adapted
form, new structures were obtained in the ligand-free
state152 or bound to a peptide from the G-protein
transducin.51 The new structures are distinguished
from the retinal-bound one, in that TM6 is tilted out-
ward, whereas the TM5 helix is more elongated and
close to TM6. Apparently, binding of the transducin
peptide has no structural effect above the one seen
upon removal of retinal. These changes may also occur
upon rhodopsin activation and it is likely that active
and inactive states of other GPCRs also correspond to
alternate arrangements of the TM-helix bundle.
Depending on whether antagonists or agonists are

bound within the bundle, the spatial arrangement the
TMDs is thought to switch from inactive to
active.175,176

Apart from ligand-binding, conformational
changes can be subject to modulation by the surround-
ing bilayer tension. Recent crystallographic153 and
spectroscopic177 results indicate large-scale movement
of TMDs of the prokaryotic small mechanosensitive
MscS channel upon activation [Fig. 3(B)]. A close
inspection of the interface between the pore-forming
TM3 helix [blow-up in Fig. 3(B)] reveals that a Gly-
rich helix surface connects to an Ala-rich surface.
Upon activation, the relative orientation of the TM3
helices changes, yet the interface is largely maintained.
Thus, the accumulation of small residues within this
interface may render it stable, yet flexible enough for
reversible channel activation.

In addition to these examples, rearrangements of
TM-helices have also been seen after activation of
transporters178,179 and voltage-dependent180 or ligand-
gated181 channels.

The examples cited here nicely illustrate how
TMD arrangements can be regulated by ligand-bind-
ing, competitor TMDs, His protonation, and mem-
brane tension. The assembly of many bitopic and poly-
topic membrane proteins is also regulated by lipid
composition and bilayer width as documented by a
wealth of data; this topic is discussed in other excel-
lent reviews.12,19,182–186

Backbone Dynamics of Transmembrane Helices
Apart from rigid-body motions, TM-helix backbones
experience local and transient unfolding reactions, or
conformational fluctuations, which still is a largely
unexplored area in membrane protein research.19 One
way to monitor these fluctuations is hydrogen/deute-
rium-exchange experiments where transient openings
of amide hydrogen bonds give rise to successive
exchange of hydrogens for deuterium (HDX) or vice
versa (DHX), depending on the experimental design.
Membrane-embedded protein domains are not readily
accessible to the catalytically active hydroxyl ions and
thus undergo only limited exchange depending on the
protein and on experimental conditions. For example,
only little exchange was reported for the fd coat pro-
tein TMD in detergent micelles187 and the EmrE mul-
tidrug transporter in a membrane,188 whereas signifi-
cant numbers of amides exchanged with the HIV-1
virus Vpu protein TMD,189,190 the phospholemman
TMD,191 the SliK potassium channel,192 and WALP
model helices.193,194 In a few cases, the majority of
amides exchanged even in the membrane-embedded
state as exemplified by the influenza hemagglutinin
TMD195 and lactose permease.192 The latter finding is
in line with the known conformational flexibility and
solvent access via the transport pore of this polytopic
transporter.196 That pore-forming proteins undergo
much more efficient HDX is supported by the results
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obtained with the membrane-spanning influenza M2
TMD.197 There, complete exchange was seen and
exchanges were located to one face of the helix that
represents the water-exposed part of a flexible chan-
nel-forming helix.198

Although HDX or DHX experiments do not report
the kinetics of individual unfolding events, infrared
spectroscopy has recently been able to probe the dy-
namics of a membrane helical bundle in time regimes
that have been unapproachable by other methods.55,199

Using a series of 1-13C¼¼18O labeled TM peptides, 2D-
IR spectroscopy was able to measure the homogeneous
and inhomogeneous linewidths and to correlate these
with peptide structure. Although the homogeneous
linewidths were insensitive to the label position, the
inhomogeneous ones varied as a function of the la-
beled site. For example, residues in contact with the
aqueous environment exhibited larger inhomogeneous
linewidths relative to residues that are in the protein–
lipid interface. Taken together, this study presented
the first one of the picosecond dynamics of a mem-
brane protein.199

Little is currently known about the potential bio-
logical significance of these vibrational TMD motions.
It seems clear, however, that a functional role of helix
dynamics can only be subject to evolutionary fine-tun-
ing, if it depends on primary structure. None of the
aforementioned studies has addressed the sequence
dependence of TMD backbone dynamics in a system-
atic manner. So, how can TMD sequence influence
backbone dynamics? The stability of an a-helix mainly
depends on burial of hydrophobic surface upon fold-
ing, on van der Waals contacts between side-chain
atoms, and on the extent of side-chain entropy loss
upon folding (reviewed in Ref. 200). In soluble pro-
teins, Leu and Ala residues rank among the best helix-
promoters, whereas Ile, Val, Gly, and Pro destabilize
helices (reviewed in ref. 201). Although the destabiliz-
ing effect of Gly is attributed to its inability to enter
side-chain/side-chain interactions and to a strong
main-chain entropy loss upon folding, Pro cannot
form a hydrogen bond to its i-4 residue and its side-
chain clashes with the side-chain of the preceding resi-
due. The mechanism of helix destabilization by Val
and Ile is discussed more controversially. The buried
hydrophobic areas of Leu, Ile, and Val in a host helix
correlate well with their impact on its stability,202,203

suggesting a stabilizing role of the hydrophobic effect
and/or van der Waals interactions. On the other hand,
experimental helix-forming tendencies of Leu, Ile, and
Val also correlated well with the entropy loss upon he-
lix formation.204,205 Although these issues have not
been investigated intensively in transmembrane heli-
ces, there is mounting evidence that Ile and Val also
enhance the local TM-helix backbone dynamics
although if they did not globally destabilize certain
hydrophobic guest helices.206,207 A functional advant-
age of Ile/Val accumulation was originally suggested

by their overrepresentation within the TMDs of soluble
NSF (N-ethylmaleimide-sensitive factor) attachment
protein receptors (SNAREs)208 and fusogenic viral en-
velope proteins.209 Indeed, the TMDs of various fuso-
genic proteins have been shown to support outer leaf-
let mixing of docked membranes.210–213 In line with
this, synthetic peptides harboring the hydrophobic
cores of SNARE TMDs drive liposome–liposome
fusion in vitro,208,214 and thus mimic basic aspects of
the fusogenic function of full-length SNAREs.215,216

The dynamics of SNARE TMD helices was studied by
recording DHX kinetics in isotropic solution, where all
amide deuteriums are exposed to solvent. This
revealed subpopulations of amide deuteriums within
each peptide that exchanged with rate constants in a
way that depended on sequence,56 as did fusogenic-
ity.208 Thus, backbone dynamics appears to be con-
nected to fusogenic function. Inspired by the apparent
connection of Ile/Val-content, fusogenicity, and flexi-
bility of SNARE TMDs, a set of low-complexity mem-
brane-fusogenic TMD-peptides, termed LV-peptides,
was designed de novo. The hydrophobic core sequen-
ces of LV-peptides are composed of helix-promoting
Leu and helix-destabilizing Val residues at different
ratios, as well as Gly and Pro residues in some var-
iants.217 The fusogenicity of LV-peptides indeed
increases with an increasing Val/Leu ratio217 and also
requires charged terminal residues.218 LV-peptides ex-
hibit sequence-specific exchange rates that correlate
with fusogenicity, thus corroborating the link between
backbone dynamics and lipid mixing. Further, LV-pep-
tides having Val residues concentrated at peripheral or
central domains of the hydrophobic core, respectively,
suggest that dynamic domains close to the helix ter-
mini are more relevant for fusogenicity than central
domains.57 The local dynamics of the helix backbone
may therefore affect the structure of the surrounding
lipid bilayer and thus contribute to initiation of mem-
brane fusion, which is consistent with the membrane-
perturbing activity of an LV-peptide.219 Further, com-
pletion of fusion by inner leaflet mixing appears to
depend on SNARE TMD–TMD interaction,214 which
illustrates how different structural features of TMDs
may influence the functional interaction of integral
membrane proteins with the surrounding lipid bilayer.

In conclusion, as in any scientific endeavor, inves-
tigating something seemingly as simple and clearcut a
subject, as the structure of transmembrane helices,
turns out to resemble looking through a microscope
while switching to lenses of ever higher magnification.
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D, Küster P, König M, Seidel C, Jahn R (2004) De-
terminants of liposome fusion mediated by synaptic
SNARE proteins. Proc Natl Acad Sci USA 101:2858–2863.

217. Hofmann MW, Weise K, Ollesch J, Agrawal A, Stalz H,
Stelzer W, Hulsbergen F, deGroot H, Gerwert K, Reed J,
Langosch D (2004) De novo design of conformationally
flexible transmembrane peptides driving membrane
fusion. Proc Natl Acad Sci USA 101:14776–14781.

218. Hofmann MW, Poschner BC, Hauser S, Langosch D
(2007) pH-activated fusogenic transmembrane LV-pep-
tides. Biochemistry 46:4204–4209.

219. Agrawal P, Kiihne S, Hollander J, Hulsbergen F, Hof-
mann M, Langosch D, de Groot H (2007) Solid state
NMR investigation of the interaction between biomi-
metic lipid bilayers and de novo designed fusogenic pep-
tides. ChemBiochem 8:493–496.

1358 PROTEINSCIENCE.ORG Transmembrane Domain Assembly And Dynamics


