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ABSTRACT
Summary: The genomic abundance and pharmacological import-
ance of membrane proteins have fueled efforts to identify them based
solely on sequence information. Previous methods based on the physi-
cochemical principle of a sliding window of hydrophobicity (hydropathy
analysis) have been replaced by approaches based on hidden Markov
models or neural networks which prevail due to their probabilistic
orientation. In the current study, an optimization of the hydrophobi-
city tables used in hydropathy analysis is performed using a genetic
algorithm. As such, the approach can be viewed as a synthesis
between the physicochemically and statistically based methods. The
resulting hydrophobicity tables lead to significant improvement in
the prediction accuracy of hydropathy analysis. Furthermore, since
hydropathy analysis is less dependent on the basis set of membrane
proteins is used to hone the statistically based methods, as well as
being faster, it may be valuable in the analysis of new genomes.
Finally, the values obtained for each of the amino acids in the new
hydrophobicity tables are discussed.
Availability:
Contact: arkin@cc.huji.ac.il

1 INTRODUCTION
Membrane proteins are of major importance and interest as they
participate in the transduction of signals across the membrane and
control the flow of molecules in and out of the cell. Their import-
ance is reflected by their genomic abundance, and in a wide variety
of organisms, membrane proteins constitute between 20 to 35% of
all proteins in their genome (Wallin and von Heijne, 1998; Stevens
and Arkin, 2000b). Moreover, they are extremely important in bio-
medicine as they serve as targets for most pharmaceutical agents in
clinical use today.
Structures solved so far, permit classification of membrane pro-

teins into two categories: α-helical bundles and β-barrels (White
et al., 2001). Since α-helical bundles are far more prevalent in the
genome (Wallin and von Heijne, 1998; Stevens and Arkin, 2000b),
and their biomedical importance is greater than that of β-barrels,
all discussion henceforth will be concerned only with membrane
proteins which adopt an α-helical bundle fold.
The importance of membrane proteins has promoted efforts to

develop algorithms capable of accurately predicting their presence
based on sequence information. Programs in common use reach
appreciable prediction levels (Kall and Sonnhammer, 2002), and
include TMHMM (Sonnhammer et al., 1998), HMMTOP (Tusnady

∗To whom correspondence should be addressed.

and Simon, 2001), PHDhtm (Rost et al., 1996) andMEMSAT (Jones
et al., 1994). These programs are based on statistical characteristics
of transmembrane helices. For example, TMHMM and HMMTOP
are based on hidden Markov models which provide a probabilistic
framework for many different types of problems. This framework
consists of a set of states corresponding to the general biological
scheme of the protein regions that are modeled. For instance, models
of membrane proteins will generally include states for cytoplasmic
loops, transmembrane regions and periplasmic loops. Each state
is characterized by the distribution of amino acids in the region,
its models and by the state-transition probabilities. Hidden Markov
models require a training period inwhich the parameters of themodel
are estimated with various algorithms, and then, assuming it was
successful, the model can be used to classify any given input.
A different approach is used in the program PHDhtm. When

given a protein sequence, it searches for sequence homologues and
uses neural networks to predict transmembrane regions from the
multiple sequence alignment.
Prior to the development of statistically based methods, hydro-

pathy analysis pioneered by Kyte and Doolittle (1982), had been
used to detect transmembrane regions. It relied on the fact that trans-
membrane α-helices are generally characterized by a hydrophobic
stretch of∼20 amino acids. The method is implemented by sliding a
window of a given size along the sequence (e.g. 20 amino acids) and
summing the hydrophobicity values of the amino acids within the
window. If the sum of the values for any window is above a certain
threshold, it is recorded as a membrane spanning region.
Further improvements to hydropathy analysis were introduced by

von Heijne and co-workers in the program TopPred (von Heijne,
1989; Claros and von Heijne, 1994). This method combines hydro-
pathy analysis of helices with a search for positively charged amino
acids in the cytoplasmic juxtamembranous regions of transmembrane
α-helices.
The necessity of determining the values that will predict trans-

membrane regions most efficiently had given rise to several hydro-
phobicity scales. Kyte andDoolittle (1982) used both thewater-vapor
transfer free energies and the interior–exterior distribution of amino-
acids (Chothia, 1976). Engelman et al. (1986) determined the free
energy for each of the 20 amino acids when transfered from water
to oil by calculating the surface area of each amino acid side chain
in an α-helix. An experimental scale was obtained by White and
co-workers based on the transfer free energies for each amino acid
in a pentapeptide from n-octanol to water (Wimley et al., 1996).
Hydropathy analysis, unlike statistical methods, does not rely

upon a training set of known membrane proteins for calibration.
In other words, the physical criteria that determine the stability of
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membrane proteins are expected to be relatively constant among
different organisms. In contrast, statistical sequence characterist-
ics that may be unique to a specific organism, such as nucleotide
bias (Stevens and Arkin, 2000a), may lead to poorer prediction in
whole genome analyses if the training set was taken from different
organisms (Kall and Sonnhammer, 2002).
In the current study, we present a statistical method that we have

developed, which improves the prediction accuracy of hydropathy
analysis. The method can be viewed as a synthesis between the
statistically and physicochemically based methods. Using a genetic
algorithm (GA), hydrophobicity tables with improved prediction
accuracy were selected, based on a large dataset of structurally
determined transmembrane proteins as well as aqueous proteins.
The Matthew’s correlation coefficient was used as a rigorous stat-
istical marker, employing cross-validation, in order to show that
the predictive power of the resulting hydrophobicity table improved
appreciably. We also compare the hydrophobicity values obtained
with those of previous methods and provide insight on the contri-
bution of individual amino acids to more accurate predictions of
transmembrane helices.

2 METHODS
We have used a GA incorporating different window sizes and thresholds in
order to optimize known hydrophobicity tables over a set of solved mem-
brane and aqueous proteins, thereby improving the predictive power of the
hydropathy analysis.

2.1 Construction of the datasets
When constructing training and test sets, it is important to select pro-
teins with unambiguous topology assignments. Since such an assignment
is possible only when selecting proteins whose structure has been determ-
ined, all non-homologous α-helical membrane proteins in the list given
byWhite (http://blanco.biomol.uci.edu/Membrane_Proteins_xtal.html) were
downloaded from the protein data bank (Berman et al., 2000). Further-
more, since accurate prediction involves minimization of false positives
(water-soluble proteins predicted to be membrane proteins), a database of
water-soluble proteins was constructed from a non-redundant set of the pro-
tein data bank (Holm and Sander, 1996, 1997). The ratio of membrane
proteins to water-soluble proteins in our training and test sets reflected
the genomic ratio of the above, which is roughly 1:3 (Stevens and Arkin,
2000b).
The training set contained 85 membrane protein chains and 255 water-

soluble protein chains. The transmembrane segments within the set of
membrane proteins were defined according to the original structure pub-
lication, by analysis with DSSP (Kabsch and Sander, 1983) and by visual
inspection of the structure. The test set, used to measure the performance
of the algorithm, was built in a similar manner. It consisted of 8 membrane
protein chains and 24 water-soluble protein chains, comprising ∼10% of all
protein chains used in this study.

2.2 Hydropathy analysis
As stated above, hydropathy analysis involves summation of the hydrophobi-
city values which are represented by free energy values. Hence, each window
summation results in a #G value that states its overall hydrophobicity. The
results are presented as a graph of sequence positions versus #GWater→Oil.
Each point represents the hydrophobicity of a putative transmembrane helix
starting at the given position along the sequence (example in Fig. 1). If a
peak in the graph exceeds a certain empirically chosen threshold and does
not overlap with any other transmembrane segment, it is viewed as represent-
ing the start of a new putative transmembrane α-helix. In the case where an
overlap occurs, both helices are combined into one larger putative α-helix.
An overlap between helices is considered when the difference between their
positions is less than a quarter of the window size used.
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Fig. 1. Hydropathy analysis of human glycophorin A, the first membrane
protein to be sequenced (Tomita and Marchesi, 1975). Calculation was done
according to the GES scale hydrophobicity table (Engelman et al., 1986),
with a threshold of #GWater→Oil = −27 kcal/mol (shown as a gray dotted
line) and a window size of 15 amino acids (Stevens and Arkin, 2000b). Bold
letters indicate the region which reaches maximum hydrophobicity according
to the above criteria.

2.3 Scanning the training set
The program we developed accepts as input a hydrophobicity table (H$i ),
a hydrophobicity cutoff, a sensitivity parameter (see below) and a window
size. Subsequently, the program performs a hydrophobicity analysis on each
of the sequences within the training set (membrane and soluble proteins) by
sliding the window over each sequence.

2.4 Score calculation
In any prediction process there can be four different possibilities to
account for:

TP: True positive, a transmembrane helix correctly predicted.
FP: False positive, a transmembrane helix predicted when there was none.
TN : True negative, no transmembrane helix predicted when there was none

to predict.
FN : False negative, no transmembrane helix predicted when there was one

to predict.

It is clear therefore, that any single number that represents the predictive
power of the method must account for all of the possibilities listed above.
One such factor is the Matthew’s correlation coefficient, given by

C ≡ TP TN − FN FP√
(TN + FN)(TP + FN)(TN + FP)(TP + FP)

(1)

The Matthew’s correlation coefficient ranges from −1 ≤ C ≤ 1. A value of
C = 1 indicates the best possible prediction, in that every transmembrane
helix was correctly predicted, and only true transmembrane helices were pre-
dicted. A Matthew’s correlation coefficient of C = −1 indicates the worst
possible prediction (or anti-correlation), where not a single transmembrane
helix was correctly predicted and the largest number of incorrect transmem-
brane helices were predicted. Finally, a Matthew’s correlation coefficient of
C = 0 would be expected for a random prediction scheme.
Every predicted helix from the training set was classified as true/false

positive according to a sensitivity parameter that ranged from 0 to 6. TP was
defined when the start of a predicted transmembrane helix was within ±0 to
6 amino acids from the start of the actual one, and FP was defined otherwise.
TN was defined as the potential number of non-transmembrane segments

in the protein. In a water-soluble protein it was equal to the size of the protein
divided by the window size and truncated to the nearest integer, where as in
a membrane protein, every extramembraneous region was considered as an
independent water-soluble protein.
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Fig. 2. Schematic diagram of the GA used to enhance the predictive value
of hydrophobicity tables. See text for details.

The Matthew’s correlation coefficient was calculated for each sequence in
the training set, and the values were averaged to get an overall value for the
entire set. The process was repeated for a combination of window sizes from
15 to 25 and hydrophobicity cutoff values of 20 to 35.

2.5 Genetic algorithm (GA) scheme
Genetic algorithms are adaptive heuristic search algorithms (Holland, 1975).
As such they represent an intelligent exploitation of a stochastic search within
a solution population which is used to solve optimization problems. They
also assign a fitness value to each member of the population and behave in
an analogous manner to Darwinian evolution: they strive to increase (i.e.
optimize) the fitness of the individuals within the population (Koza, 1992).
A GA was chosen over other optimization methods owing to the follow-
ing reasons: (1) it allows the incorporation of objective information rather
than derived or auxiliary knowledge, (2) it is considered an excellent search
method where the solution search space is extremely large, and, most import-
antly, (3) the usage of randomized parameters helps to avoid local optimum
solutions and contributes to the robustness of the algorithm.

2.5.1 GA description TheGAwe applied is based on the common roul-
ette wheel selection technique (Fig. 2). The algorithm generates a population
comprised of 20 hydrophobicity tables. It simulates the course of evolution
which is expressed by breeding steps, in order to improve the fitness of indi-
vidual tables within the population. The fitness is expressed by the number
of correctly predicted membrane regions in a training set of proteins.
The algorithm adopts the following procedure. It starts with two hydro-

phobicity tables: Kyte–Doolittle scale (KD) (Kyte and Doolittle, 1982) and
Goldman–Engelman–Steitz scale (GES) (Engelman et al., 1986). This is

shown in Figure 2, stage 1. The tables are used as a source for the initiation
of the first population of hydrophobicity tables. Twenty random tables are
generated from the initial tables (Fig. 2, stages 2 and 3) in a breeding process
described in detail below. All generated tables are used to predict transmem-
brane regions in the training set, and are then evaluated for fitness (Fig. 2,
stages 5 and 6). The two best tables (highest fitness value) are chosen for
a cross-validation process (Fig. 2, stage 7). Depending on the results of the
cross-validation process (see details below and in Fig. 2, stages 8 and 9) either
the two current or the two previous tables (from the previous iteration) are
chosen. At this point, if the algorithm has converged, the process is stopped
and the final 200 best tables are tested on a final unseen test set (Fig. 2,
stages 11–13). Otherwise, the selected tables are used in another iteration of
the GA (Fig. 2, stages 9 and 10).
It is important to note that at each iteration of the algorithm new cross-

validation and training sets are generated from a constant initial learning set
of 340 proteins (Fig. 2, stage 4) and that the 200 best tables are selected for
testing in order not to create a bias in the Mathew’s correlation coefficient
results subjected to the best table only.

2.5.2 Table encoding A 1D vector of size 20 was used for each table’s
encoding. Each cell in the vector represented a hydrophobicity value for
a different amino acid, using a floating point representation, since it is
preferable to represent the genes in a continuous, rather than in a discrete
distribution. The genotype for the solution with k genes was symbolized as
a vector (x1 · · · xk) with xi ∈ R, where in this case, k = 20. The order of
each amino acid’s representation in the vector is shown in Table 3, where the
first amino acid is Ile and the last one is Arg. In the KD table for instance,
the hydrophobicity value for Ile is 4.5 and appears in the first cell, while the
value for Arg is −4.5 and appears in the last cell.

2.5.3 Window-size and threshold The window-size and threshold
used in the hydropathy analysis were evolved in a similar fashion to that
of the values for the hydrophobicity of each amino acid. Specifically, every
table contained two additional elements (21 and 22, respectively) that held
the values for the window-size and hydrophobicity threshold. These elements
were allowed to mutate (in changes of ±1) and cross-over between tables in
a similar fashion to all other table elements.

2.5.4 Generating the population Using a pair of hydrophobicity
tables as parents, 20 siblings were generated in a breeding process that was
repeated 10 times. Each included recombination and mutation steps, and
produced two new hybrid tables (Fig. 3). The breeding process occurred at
each iteration of the GA, and was carried out in the following manner:

• Cross-over stage (Fig. 3A–C): An even integer 2≤ z ≤ 20 was randomly
chosen and the number of exchange positions between the hydrophobi-
city tables was determined. z/2 represents the number of cross-overs.
Then, a vector of exchange positions (x1 · · · xz), where 1≤ xi ≤ 20, was
generated randomly for each of the two original tables. Finally, two new
hybridized tables were produced by melding the information from both
original tables as a simple recombination process.

• Mutation stage (Fig. 3D): two integers 1≤ m and n ≤ 20 were randomly
chosen and the number ofmutations to be performedon each of the tables
was determined. Then, two vectors of mutation positions (y1 · · · ym

and w1 · · · wn, where 1 ≤ yi and wi ≤ 20) were generated randomly.
The table values that were chosen for mutation were changed by ±0.5
according to a binary random decision.

2.5.5 Training and cross-validation In each iteration of the GA, the
learning set was divided into two smaller sets: (1) a training set which
consisted of 90% of the proteins from the learning set and (2) a valida-
tion set, which consisted of the remaining 10% of the learning set. The
division was done by random choice. The training set was then scanned
by hydropathy analysis, and the predictive power of the current population
expressed by the Matthew’s correlation coefficient was calculated for each
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Fig. 3. Schematic diagram of the population generation process. (A) Two
tables for further breeding are chosen, denoted by parent-1 (black shape) and
parent-2 (gray shape). (B) A number of cross-over positions at each table is
randomly chosen (e.g. z = 4), along with a random choice of the exchange
positions themselves. (C) The new tables are shown after performing recom-
bination. Each of the new tables is a product of hybridization between the
original tables. (D) The number of mutations to be performed for each table
is randomly chosen (e.g. m = 4 and n = 3), along with the mutation posi-
tions, resulting in the change of each chosen table value by±0.05. The same
mutation position can be chosen more than once.

table. (Fig. 2, stage 5). Next, a cross-validation process that measured the pro-
gress of the training phasewas performed by selecting the two best-predicting
tables from the training phase and testing them on the validation set (Fig. 2,
stages 6–8). Cross-validation was considered successful if theMatthew’s cor-
relation coefficient obtained from testing the two tables on the validation set
was higher than the value of the previous round. In that case, if the algorithm
did not converge or reach its maximum generation value (i.e. it was still pos-
sible to optimize the hydrophobicity values), another breeding process began
(Fig. 2, stage 10), using these two tables as parents, and generating 20 siblings
as described in Section 2.5.4. The old population of tables was replaced by
the new siblings according to a replacement (selection) parameter.
The replacement parameter was determined in the program’s initiation

phase, and ranged from 20 to 80%. It determined what percentage of unfit
tables remained in the training set, and howmany of them were replaced. For
example, a replacement of 20% represented a state in which 20% of the unfit
tables had been replaced by new randomized tables. Tables were considered
unfit if their Matthew’s correlation coefficient was <0.5. If cross-validation
failed, the two best optimized tables from the previous round were selected as
parents for the next iteration’s breeding process. Upon reaching convergence

Table 1. GA and program parameters

Parameter Value Meaning

Table population 20 Number of tables to be used in
the training phase

Population (input proteins) 340 Number of sequences in initial
learning population

Training set 90% Percentage of sequences from the
learning population used
during training

Validation set 10% Percentage of sequences from the
learning population used
during cross-validation

Final test set 32 Number of sequences in the test
population

Mutation units ±0.5 A point mutation change
Unfit tables threshold 0.5 The threshold defining unfit

tables as replacement
candidates

Selection parameter 20–80% Replacement percentage of unfit
tables

C value −1 to 1 Matthew’s correlation coefficient,
an indication of a table’s
predictive power

Table 2. Prediction valuesmeasured on three different sets (training and test),
according to theMatthew’s correlation coefficient of hydropathy analysis and
statistically based methods against GA

Prediction method Training set Test set
1 2 3 1 2 3

Hydropathy: GES 0.62 0.71 0.71 0.59 0.71 0.70
Hydropathy: KD 0.52 0.74 0.53 0.39 0.74 0.54
Hydropathy: GA 0.78 0.79 0.79 0.71 0.81 0.74
Statistical: TMHMM 0.90 0.89 0.89 0.85 0.92 0.92
Statistical: PHDhtm 0.83 0.84 0.82 0.78 0.73 0.85

The Matthew’s correlation coefficients listed for the test sets are those of the average
200 best tables generated by the GA. Highest values are denoted in bold.

of the hydrophobicity tables or the maximum generation value, the process
was stopped and the best 200 tables were chosen for the final evaluation.
Finally, all parameters used in the algorithm are summarized in Table 1.

2.6 Testing the performance of the algorithm
The performance of the algorithm was measured using 3 different sets of
32 protein chains (8 membranous and 24 aqueous) that were not previously
exposed to the training phase (Fig. 2, stage 12).
Eachmeasurement was done in the following way: 200 best tables resulted

from each training set out of the three, were selected. The tables which
were different in their hydropathy as well as their window size and threshold
values were exposed to the appropriate test set yielding a hydropahty analysis
list which served for a creation of final result based on the most common
helix positions.
The results of the optimized table were compared with those obtained

by using the statistically based methods TMHMM and PHDhtm, and to the
conventional hydrophobicity scales (KD and GES) (Table 2).
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Fig. 4. Top panel: Predictive power of hydrophobicity tables generated by
the GA from set 1 as a function of the evolution cycle during training. Bot-
tom panel: Hydrophobicity table values during the course of theGA evolution
whereby each column represents a single table and the color coding is accord-
ing to the amino acid’s hydrophobicity as noted in the color bar on the left
(values are in kcal/mol). Initial values are on the left and final values are on
the right.

After the evolution finished, the top 200 hydrophobicity tables were selec-
ted and used to obtain an averaged hydrophobicity profile of a particular
protein. Explicitly, hydropathy analysis was used employing each of the 200
best tables. The results of these analyseswere comparedwhereby a transmem-
brane segment was classified as true only if ≥80% of the tables predicted its
presence. The final prediction was then used to calculate the Matthew’s cor-
relation coefficient as described above. The average values were then used to
represent predictive power of the GA hydrophobicity tables.

3 RESULTS
Figure 4 (top panel) depicts the improvement in the predictive power
of the hydropathy analysis on training set 1 as a function of the GA
cycle number during the training phase. This improvementwas found
to be similar in the other training sets as well. Two different optimiz-
ations were performed, starting from themating combinations of two
different scales: GES and KD. These two matings exhibited similar
behavior, manifested by a steep ascend of the predictive power in the
first 1000 cycles, and by a steady state with a high predictive value.

Table 3. Amino acid hydrophobicity values (in kcal/mol) for the different
scales used in the study

KD GES GA
Set 1 Set 2 Set 3

I 4.5 3.1 2.2 9.9 9.9
V 4.2 2.6 8.7 13.4 8.7
L 3.8 2.8 18.2 14.5 17.3
F 2.8 3.7 9.1 4.6 1.9
C 2.5 2.0 31.3 3.8 −3.8
M 1.9 3.4 −5.3 7.0 4.6
A 1.8 1.6 1.8 4.3 7.2
G −0.4 1.0 7.7 0.1 −1.3
T −0.7 1.2 −8.8 −11.4 −2.5
S −0.8 0.6 −7.1 −0.3 −3.5
W −0.9 1.2 −19.8 −4.2 3.6
Y −1.3 −0.7 −9.4 −3.4 −18.4
P −1.6 −0.2 −28.6 −35.3 −47.0
H −3.2 −3.0 −12.2 −19.2 −23.0
E −3.5 −8.2 −38.8 −49.4 −35.2
Q −3.5 −4.1 −28.4 −29.6 −30.2
D −3.5 −9.2 −66.8 −40.7 −55.1
N −3.5 −4.8 −30.5 −52.5 −29.1
K −3.9 −8.8 −25.0 −44.8 −41.2
R −4.5 −12.3 −83.4 −64.5 −74.4

The final Matthew’s correlation coefficients obtained from the
training and the test set by using GES, KD, PHDhtm and TMHMM,
in comparison with the GA average method, are given in Table 2.
For example, theMatthew’s correlation coefficient for the GES scale
is 0.71 (test set 2), in contrast to the best table produced by the GA
exhibiting a Matthew’s correlation coefficient of 0.81. In addition,
the predictive power of hydropathy analysis employing the optim-
ized table on set 2 is found to be better than PHDhtm (Rost et al.,
1996) which manages to reach a Matthew’s correlation coefficient
of 0.73 only. The best table produced by the GA used an average
window size of 20, and an average cutoff of 30 kcal/mol.
Figure 4 (bottompanel) depicts the evolution of the hydrophobicity

values on training set 1 during the GA optimization. The optimized
values are given numerically in Table 3, in comparison with those of
other hydrophobicity scales.
In the first stages of the evolution process (∼1000–1500 genera-

tions), the hydrophobicity values undergo minor changes. Then,
values of certain amino acids (Arg, Trp, Asp, Pro) undergo a sig-
nificant change, after which the system enters a steady state in which
the hydrophobicity values remain relatively stable.
Table 3 exhibits three groups of amino acids. (1) Amino acids

which maintain the same hydrophobic or hydrophilic orientation
in all hydrophobicity scales, where the GA-optimized table merely
presents an amplification of the original values. More specifically,
apolar amino acids (Ile, Val, Leu and Phe) become more hydro-
phobic, whereas polar amino acids (Arg, Lys, Asp, Glu, Asn, Gln,
His, Pro and Tyr) become more hydrophilic. (2) Amino acids for
which the hydrophobicity tables do not dictate a clear hydrophobic
nature (Gly, Thr, Ser and Trp), and the GA-optimized table classi-
fies them in the following manner: The hydroxylic amino acid Ser
is mildly hydrophilic and the aromatic amino acid Trp is mildly
hydrophobic (set 3). (3) Two amino acids, Cys and Met which
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completely change their hydrophobic nature by the GA scale. In
other words, in the GA-optimized table, Cys and Met are a hydro-
philic amino acids (sets 3 and 1), and their value is negative, while in
the other two tables it is hydrophobic and receives a positive value.

4 DISCUSSION
Our study presents an evolutionary algorithm concept developed in
order to optimize currently available hydrophobicity tables and to
enable better prediction of transmembrane segments in proteins.

4.1 The contribution of individual amino acids to the
prediction of transmembrane helices

Analysis of the values that individual amino acids attain after optim-
ization is revealing, in terms of the contribution of each amino
acid towards the identification of transmembrane helices. The most
obvious trend is that during the optimization process both the hydro-
phobicity and hydrophilicity values of the amino acids increase
(Fig. 4). The effect is most pronounced in the basic amino acids Arg
and Lys, consistent with the fact that their pKa values are farthest
from neutrality and hence their de-ionization least probable.

4.2 Prediction accuracy
Hydropathy analysis was one of the first methods used to predict the
presence of transmembrane helices. However, it has been virtually
overridden by statistically based methods owing to their higher pre-
dictive value (Kall and Sonnhammer, 2002). Indeed, in the current
study, hydropathy analyses using the two conventional hydrophobi-
city tables yielded Matthew’s correlation coefficients which were
much lower than prediction using TMHMM (0.39–0.74 versus 0.92,
Table 2). Optimization of the hydropathy table using a GA, for 1000
iterations, shows an improvement in the prediction rate of the final
optimized table over the conventional hydropathy indices. Given
more evolution time, expressed by further iterations of the algorithm,
the optimization ended with a final Matthew’s correlation coefficient
range from 0.71 (set 1) to 0.81 (set 2). Furthermore, optimization
was performed using three different final test sets, so as not to
over-optimize the resulting table to any specific sequence.
In the analysis of new genomes, there is reason to believe that

hydropathy analysis based on the GA-optimized table may achieve
predictions that do not change appreciably in varying genomes. This
may contrast with pure statistically based algorithm that used a
specified basis set to hone their accuracy. The GA we developed
implements a heuristic approach to transmembrane helices predic-
tion, that is based both on a set of known membrane proteins and on
pure physicochemical principles that lie within the sequence level.
The method did not use the positive inside rule or auxiliary genome
information; yet, it achieved a high prediction value on the test set.
Previous studies have shown that nucleotide bias of genomes has

a strong influence on the occurrence of hydrophobic amino acids
found within transmembrane helices (Stevens and Arkin, 2000a).
Therefore, this bias should be taken into account in methods that
are developed to predict such regions. We believe that the method

presented in this study and the optimized tables it produced, could be
the base for further extensions, such as specific genome optimization
of the hydrophobicity table, usage of the positive inside rule and
propensity of amino acids to reside within transmembrane regions.
In conclusion, we have shown that using a GA as a method for
hydrophobicity tables optimization, is efficient in transmembrane
segment prediction, and could be improved in order to increase both
sensitivity and specificity of transmembrane detection methods.
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