
Monte Carlo Estimation of the Number of Possible Protein
Folds: Effects of Sampling Bias and Folds Distributions
Hadas Leonov,1 Joseph S.B. Mitchell,2 and Isaiah T. Arkin3*
1School of Computer Science and Engineering. The Hebrew University, Givat-Ram, Jerusalem, Israel
2Department of Applied Mathematics and Statistics. Stony Brook University, Stony Brook, New York
3The Alexander Silberman Institute of Life Sciences. Department of Biological Chemistry. The Hebrew University, Givat-Ram,
Jerusalem, Israel

ABSTRACT The estimation of the number of
protein folds in nature is a matter of considerable
interest. In this study, a Monte Carlo method employ-
ing the broken stick model is used to assign a given
number of proteins into a given number of folds.
Subsequently, random, integer, non-repeating num-
bers are generated in order to simulate the process
of fold discovery. With this conceptual framework at
hand, the effects of two factors upon the fold identi-
fication process were investigated: (1) the nature of
folds distributions and (2) preferential sampling
bias of previously identified folds. Depending on the
type of distribution, dividing 100,000 proteins into
1,000 folds resulted in 10–30% of the folds having 10
proteins or less per fold, approximately 10% of the
folds having 10–20 proteins per fold, 31–45% having
20–100 proteins per fold, and >30% of the folds
having more than 100 proteins per fold. After ran-
domly sampling one tenth of the proteins, 68–96% of
the folds were identified. These percentages depend
both on folds distribution and biased/non-biased
sampling. Only upon increasing the sampling bias
for previously identified folds to 1,000, did the model
result in a reduction of the number of proteins
identified by an order of magnitude (approximately
9%). Thus, assuming the structures of one tenth of
the population of proteins in nature have been
solved, the results of the Monte Carlo simulation are
more consistent with recent lower estimates of the
number of folds, <1,000. Any deviation from this
estimate would reflect significant bias in the experi-
mental sampling of protein structure, and/or sub-
stantially nonuniform folds distribution, mani-
fested in a large number of single-fold proteins.
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INTRODUCTION

The human genome sequencing project is one of the most
ambitious undertakings in the history of science.1–4 How-
ever, in terms of difficulty it may be overshadowed by the
second phase of the project: the experimental determina-
tion of the structure of each of the gene products, coined
“structural genomics.”5,6 Clearly, any theoretical modeling
approach that would alleviate the need for the tedious

experimental structure determination would prove to be
exceptionally advantageous.

One such method is knowledge-based modeling, whereby
one models a protein with an unknown structure based on
the experimentally determined structure of a close ho-
molog (for reviews see Johnson et al.7 and Moult8). As the
body of solved protein structures increases, the chances of
finding a protein whose structure has been solved in-
crease, bearing close sequence homology to the protein of
unknown structure. However, what happens when no
close homolog of the protein in question had its structure
solved?

One possibility is to assume, with a certain positive
probability, that the structure of the protein in question
will in fact be similar to one of the solved proteins’
structures, or, in other words, that the fold of the protein in
question has been discovered before. If this is the case,
then one can use any one of the unique folds in the protein
database as a template on which to build the structure of
the protein in question; this process is known as threading
(for reviews see Jones and Thornton9 and Bryant and
Altschul10).

The reliability of this procedure clearly depends on the
completeness of the current repository of known folds. If
only a fraction of the folds found in nature have been
identified, the subsequent ability to predict the structure
of an unknown protein will be vanishingly small. However,
if in studies so far, the vast majority of folds have already
been identified, one can safely assume that threading
algorithms will have a good chance of success.

The estimation of the overall number of folds in nature
has been reported several times, using varying procedures,
leading to a wide range of estimates: 400–8,000.11–18 As
an example, some procedures have plotted the number of
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unique folds as a function of the total number of protein
structures solved.11 The diminishing number of new folds
identified can then be used to estimate the total number of
folds. Other, more sophisticated statistical approaches
have attempted to model the division of proteins into
families and folds in the existing database and to extrapo-
late this model to the entire proteome.15,16,18 Each of the
above procedures has used a particular function to de-
scribe the distribution of proteins into folds, rather than
relying on a systematic variation.

Herein, a different approach to the problem of estimat-
ing the total number of folds is taken. Using a Monte-Carlo
simulation, the “curve of diminishing returns” is studied
for a set number of proteins and any given number of folds.
More importantly, the effects of two factors upon the
“curve of diminishing returns” are investigated: (1) the
folds distribution and (2) the sampling bias.

METHODS

In order to simulate the process of fold discovery, n
proteins were divided into f folds. Subsequently, m pro-
teins are randomly sampled, and the fold “affiliation” of
the protein is registered. If this fold was not previously
“identified” by another sampled protein, the number of
known folds is incremented by one; otherwise, the number
of previously identified folds remains unchanged. At the
end of the simulation, a certain percentage of the folds will
have been discovered.

Folds Distribution

The “broken stick model” was used in order to parse a
given number, n, of proteins into f folds, as shown schemati-
cally in Figure 1. A stick of length n is cut at f � 1
breakpoints to yield f smaller sticks, with each stick

representing one fold and the stick size representing the
number of proteins in the fold. The breakpoints are
determined by f � 1 random, distinct integers, X1, X2, . . . ,
Xf�1, with 0 � Xi � n. The f � 1 numbers {0, X1, X2, . . . ,
Xf�1, n} were sorted into an ascending array (of “order
statistics” 0 � X(0) � X(1) � X(2) � . . . � X(f � 1) � X(f) � n),
such that the ith fold corresponds to integers j between X(i)

and X(i�1): X(i) � j � X(i�1).
As mentioned, the f � 1 breakpoints Xi are selected at

random from the set {1, 2, . . . , n � 1} of integers, without
replacement. This implies a discrete distribution analysis,
thus the discrete random variable Y � min1�i�f�1 Xi has
the probability distribution function given by

P�Y � x� � 1 � P�Y � x�

� 1 � P(none of 1, . . . , x are selected)

� 1 �
� x

0 � � n � 1 � x
f � 1 �

� n � 1
f � 1 �

� 1 �
n � 1 � x

n � 1 �
n � 2 � x

n � 2 · · ·
n � x � f � 1

n � f � 1 ,

(1)

for any x � {1,2, . . . , n � x}. This probability distribution
function describes the distribution for any one stick length,
for the assumption of a uniform fold distribution.

If the random variables X1, X2, . . . , Xf�1 are continuous
uniform random variables on the interval (0, 1), then the
probability density function, fy(x), for Y � min1�i�f�1 Xi is
readily computed:

P�Y � x� � �n � x
n �f � 1

, (2)

fY�x� �
f � 1

n � �1 �
x
n�

f � 2

. (3)

Since Y is the length of the first stick, and each stick has
the same distribution of length, fY also gives the probabil-
ity density function for any one stick length. This can be
used as a good approximation to the discrete case.

Non-uniform folds distributions

In order to simulate the effects of a nonuniform distribu-
tion, the random breakpoints were generated by nUy,
where U is a uniform random variable in the interval (0, 1).
The case y � 1 gives the uniform distribution; if y � 1,
though the breakpoints are more likely to occur close to the
left end of the stick.

Sampling

In order to simulate the process of experimental struc-
ture determination, m random distinct integers, Zi, were
generated, with 0 � Zi � n, where n is the total number of
proteins (see Fig. 2). If the new protein is matched to a fold
that was previously unidentified, the number of new folds

Fig. 1. The delineation of fold sizes. Top panel: a stick of length n is
dissected four times in order to result in five folds. Middle panel: the
resulting five folds. Bottom panel: the generated folds are arranged
according to their sizes (i.e. the number of proteins).
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identified is incremented; otherwise, the number of folds
identified remains unchanged.

Biased sampling

Biased sampling was introduced in order to simulate the
process of preferential selection (or avoidance) of previ-
ously identified folds. In other words, in the case of
preferential sampling, new proteins that were selected at
random are more likely to belong to previously identified
folds, taking into account the compounded number of
identified and unidentified folds so far. When sampling
with a bias of b � 1 towards previously identified folds, the
stick lengths belonging to previously identified folds are
multiplied by b, thereby increasing the probability to
sample the next protein from a previously discovered fold.
The decision whether a new fold is discovered or not, is
made by selecting a uniform random variable X, 0 � X � 1.
Then, if the following expression is true, the sampled
protein falls into a previously discovered fold; otherwise,
the sampled protein falls into a new fold.

X �
d � b

d � b � u , (4)

where d is the total size of all previously discovered folds
(i.e., the total number of proteins in those folds), u is the
total size of all unidentified folds, and b is the sampling
bias (e.g., b � 0.5 for a twofold preference towards uniden-
tified folds, b � 3 for a threefold preference towards
previously identified folds).

RESULTS
Folds Distribution

As a representative test case, 100,000 proteins were
divided into 1,000 folds using a Monte Carlo simulation of
the broken stick model. Clearly, the aforementioned num-
bers of proteins or folds are not meant to symbolize the

exact number found in nature, but rather are used solely
for the purpose of the following analyses.

The distribution of fold sizes is depicted in Figure 3.
Table I lists the percentages of folds of various size ranges.
Four distribution modes were employed: y � 1 (uniform
distribution), y � 2, y � 3, and y � 20 (nonuniform
distributions, see Methods). As expected, nonuniformity
results in a higher percentage of folds having fewer
proteins. Specifically, in the uniform distribution, slightly
less than 10% of all folds contain 10 or fewer proteins. Most
other fold size ranges have more proteins: 47% of the folds
contain 21–100 proteins and 37% of the folds contain over
100 proteins per fold. However, in a nonuniform distribu-
tion with y � 3, the percentage of folds having 10 or less
members rises to approximately 30% while the number of
larger folds (i.e., folds with more than 20 members)
decreases. In the extreme folds distribution in which y �
20, one can see that nearly 80% of the folds contain 10 or
fewer proteins per fold.

Table II shows the percentage of proteins that belong to
folds of a particular size range. As one can see, increasing
the nonuniform of the distribution results in:

● An increase in the percentage of proteins in folds that
contain a large number of proteins

Fig. 2. The sampling of folds. n proteins are divided into 5 folds (see
Figure 1). (a). Protein number 31 is selected at random, resulting in the
identification of the fourth fold. The number of identified folds is now one.
(b). A random protein (number 15) identifies a previously unidentified fold:
fold number two. The number of identified folds is now two. (c). A third
random protein (number 29) is selected, but this time it belongs to a
previously identified fold (fold number four). Thus, the number of identified
folds remains at two, as in (d).

Fig. 3. Distribution of fold sizes. Solid line, uniform distribution, y � 1.
Dotted line, nonuniform distribution, y � 2. Semi-dotted line, nonuniform
distribution, y � 3. Inset: Magnification of the plots for fold sizes of up to
100 proteins per fold.

TABLE I. Total Percentage of Folds of Various Size
Ranges, for the Different Distribution Types Used:

y � 1, 2, 3, and 20†

Folds Distribution

Fold Size

1–10 11–20 21–100 �100

y � 1 8.6 8.1 47 37
y � 2 16 11 41 33
y � 3 28 10 33 29
y � 20 79 3 7.1 12

†See Figure 3 and Methods. Shaded cells represent the results for a
uniform distribution (y � 1).
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● A mild increase in the percentage of proteins in small
folds (1–10 size range).

● A decrease in the percentage of proteins in mid-size
folds (i.e., 11–20, 21–100 fold sizes).

However, Table I shows a decrease in the percentage of
large folds as the nonuniformity of the distribution in-
creases. Tables I and II imply that there is a large amount
of proteins divided into relatively a small number of big
folds, and a small amount of proteins divided into a large
number of much smaller folds (and mostly to single-
protein folds).

Sampling

The results of the Monte Carlo simulation of the folds
discovery process are shown in Figure 4 and listed in Table
III. After randomly sampling 10,000 proteins (one tenth of
the entire population), which were distributed uniformly,
917 folds were identified (92%) out of a total of 1,000 folds.
When the folds distribution was not uniform (e.g., y � 2 or
y � 3) a different result was obtained. When y � 2, 861
folds were identified, and when y � 3, only 768 were
identified, a difference of about 15% from the uniform
distribution case. In the extreme distribution case of y �

20, only 31% of the folds were identified after sampling one
tenth of the protein population.

Biased Sampling

A similar influence was obtained when the sampling was
biased (see Methods), as shown in Figure 5 and listed in
Table III. When the folds distribution was uniform, unbi-
ased random sampling of 10,000 proteins resulted in the
identification of 92% of the folds, while a twofold prefer-
ence for sampling previously identified folds resulted in a
reduction of identified folds to 85%. A twofold preference
towards sampling unidentified folds (b � 0.5) resulted in
an increase in the percentage of identified folds to 96%. A
reduction of an order of magnitude in the fold identifica-
tion (to 9.3%) was observed upon increasing the sampling
bias toward previously identified folds to 1,000.

Biased Sampling and Non-Uniform Distributions

The results of the effects of combining a nonuniform
folds distributions and biased sampling are shown in
Figure 6 (constant distribution parameters y � 2 and y �
3) and in Figure 7 (constant sampling biases b � 2 and b �
0.5). Numerical values are listed in Table III. As expected,

TABLE II. Total Percentage of Proteins in Folds of Various
Size Ranges, for the Different Distribution Types Used:

y � 1, 2, 3, and 20†

Folds distribution

Fold size (%)

1–10 11–20 21–100 �100

y � 1 0.5 1.3 25 73
y � 2 0.8 1.6 21 76
y � 3 1.0 1.6 17 81
y � 20 1.0 0.4 3.5 96

†(see Figure 3 and Methods section). Shaded cells represent the results
for a uniform distribution (y � 1).

Fig. 4. Results of the unbiased (b � 1) sampling at different folds
distributions. The solid line corresponds to the uniform distribution (y � 1),
the dotted line corresponds to a non-uniform distribution with y � 2, and
the semi-dotted line corresponds to a non-uniform distribution with y � 3.

TABLE III. Percentages of All Folds Identified After
Sampling 10,000 Proteins at Random, Using Different

Values of the Sampling Bias Parameter b†

Fold Distributions

Sampling bias b

0.5 1 2 1,000

y � 1 96 92 85 9.3
y � 2 92 86 78 8.2
y � 3 77 84 68 6.8
y � 20 38 31 25 2.7

†The results are plotted in Figures 4–7. The shaded cell represents the
results for the uniform distribution (y � 1) with unbiased (b � 1)
sampling.

Fig. 5. Results of the biased sampling for a uniform folds distribution
(y � 1). The dotted line corresponds to non-biased (b � 1) sampling, the
semi-dotted line corresponds to sampling with a two-fold preference for
previously sampled folds (b � 2), and the solid line corresponds to
sampling with a two-fold preference for unidentified folds (b � 0.5).
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the combined effects of preferential sampling of previously
identified folds, along with nonuniform folds distributions,
leads to a further reduction in the total percentage of folds
identified.

For example, in the nonuniform folds distribution with
y � 2 (Fig. 6, top), a twofold preference towards previously
identified folds resulted in an 8% decrease in fold discov-
ery, while an opposite twofold preference towards previ-
ously unidentified folds resulted in a 6% increase in fold
discovery. Similar effects were obtained in the nonuniform
distribution with y � 3 (Fig. 6, bottom).

DISCUSSION

The purpose of this study was not so much to estimate
the number of possible folds, but rather to determine the
effects of various factors upon the accuracy in estimating
the number of folds. Towards that end, a theoretical model
was constructed in which 100,000 different proteins were
divided into 1,000 folds.† With this model at hand, it is

possible to simulate the process of fold discovery: i.e.,
experimental structure determination, followed by count-
ing the number of new folds identified. Furthermore, the
simulation can be used to estimate the influence of two
factors upon the fold identification process.

Folds Distributions

The folds distribution choice affects the way in which
proteins are grouped into folds. For n proteins, the number
of folds can be anywhere from 1 to n. Even for a given
number of folds, f, the distribution with which proteins are
grouped into these folds can vary significantly. Two ex-
treme examples are: (1) each fold contains n/f proteins,**
or (2) f � 1 folds each contain just a single protein and one
fold contains n � f � 1 proteins (i.e., all the rest). In the
first case, each fold may be discovered with an equal
probability of (approximately) 1/f, maximizing the total
number of folds that may be discovered with m protein
samples. In the latter case, there is a very low probability

†Both choices (i.e., the numbers of proteins and folds) are by no
means stated to indicate the precise numbers found in nature. They
only serve to construct our theoretical framework.

**More precisely, each fold contains either the rounded-down
integer, [n/f], or the rounded-up integer, [n/f], so that the total number
of proteins is exactly n.

Fig. 6. Results of the biased sampling for non-uniform folds distribu-
tions: y � 2 (top panel) and y � 3 (bottom panel). The dotted line
corresponds to non-biased sampling (b � 1). The semi-dotted line
corresponds to sampling with a two-fold preference for previously sampled
folds (b � 2). The solid line corresponds to sampling with a two-fold
preference for unidentified folds (b � 0.5).

Fig. 7. Results of the biased sampling of uniform and nonuniform folds
distributions. The semi-dotted line corresponds to uniform folds distribu-
tions, the dotted line corresponds to non-uniform folds distribution with
y � 2, and the solid line corresponds to non-uniform folds distribution with
y � 3. Top panel: Sampling is with a two-fold preference towards
previously identified folds (b � 2). Bottom panel: Sampling is with a
two-fold preference towards unidentified folds (b � 0.5).
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(1/n) to discover each of the small folds, and there is a high
probability ((n � f � 1)/n) to discover the large fold; thus, it
is very likely to discover the large fold, along with a few of
the small folds. Such a folds distribution minimizes the
total number of folds discovered. The real folds distribu-
tion is likely somewhere in between these two extreme
examples.

Sampling Bias

The sampling bias affects the probability of preferen-
tially sampling or avoiding a previously identified fold.
There is one major reason for the inadvertent, preferential
sampling of previously identified folds: The limitation of
the experimental methods that are used to elucidate
protein structures.

Both X-ray crystallography and solution NMR spectros-
copy place considerable constraints upon the experimental
conditions in which the proteins are studied. X-ray crystal-
lography by its very nature requires crystallization of the
target protein. Solution NMR spectroscopy is currently
capable of studying proteins of limited size and requires
that the protein remain soluble at millimolar concentra-
tions. The ease with which these constraints are met will
determine if the structure of the protein (and hence the
experimental identification of its fold) will be rapidly
discovered. If the right experimental conditions are not
found, the structure of the protein cannot be solved and its
fold remains unknown.

Why would experimental difficulties cause one to prefer-
entially solve previously identified folds? A possible an-
swer is that the scientific community solves the structures
that it can solve, not necessarily the structures that it
wishes to solve. It is, therefore, very likely that current
experimental techniques are better at solving the struc-
tures of some folds and not others. This will result in the
fact that some folds are preferentially sampled, while
others are neglected/avoided due to experimental difficul-
ties. Perhaps the best example of this phenomenon is the
difficulty with which the structures of membrane proteins
are solved.

One can also think of a reason for which previously
identified folds may be preferentially avoided: The desire
to investigate dramatically different proteins, assuming
that they, indeed, do possess a new fold. While this may be
a cause of negative preferential sampling, it may be
balanced by the desire to solve the structure of similar
proteins with distinct function, thereby further understand-
ing the mechanisms of the protein.

Which of the above factors dominates in determining the
sampling bias is unknown; however, it is the opinion of
these authors that experimental difficulties that result in
preferential sampling of previously identified folds prevail.

Folds Distribution

The Monte Carlo simulation employed herein used the
broken stick model. Given a fixed number n of proteins and
a fixed number f of folds, it generates a decomposition of a
“stick” that represents the set of proteins into f pieces,
using a set of f � 1 randomly generated breakpoints. Four

different folds distributions are obtained by generating
these f � 1 breakpoints according to four different distribu-
tions: a uniform distribution, and three nonuniform distri-
butions corresponding to parameter values y � 2, y � 3,
and y � 20 (see Methods). While none of these choices of
folds distributions may correspond to the way in which
proteins group into folds classes in nature, they do provide
a simple conceptual framework to illustrate the effects of
nonuniform folds distributions and nonrandom sampling
effects upon our ability to estimate reliably the number of
folds in nature.

As explained previously, as y increases, so does the
number of small folds. Specifically, in the case of uniformly
distributed breakpoints used to decompose 100,000 pro-
teins into 1,000 folds, roughly 10% of all proteins belong to
folds consisting of 10 proteins or less, while in the nonuni-
form distribution with y � 3, approximately 30% of all
proteins belong to folds of size 10 or less. Therefore, the
probability to discover such smaller folds decreases, and
the total amount of folds identified after sampling 10,000
proteins decreases. This is shown in Figures 4–7. Using
the folds distribution model described above, setting the
parameter y � 20 resulted in a distribution similar to the
extreme example (2), in that all of the breakpoints were
nearly juxtaposed to one another (see Table II).

Sampling Bias

The effect of preferential sampling (and preferential
avoidance) was measured by giving a twofold preference
towards previously identified (towards previously uniden-
tified) folds: Given the folds distribution, and the number
of identified and unidentified folds, then the probability
that the next sampled protein will be from a new fold is
lower than the probability described in equation 4 (see
Methods section), and therefore results in a reduction in
the total number of folds discovered by the end of the
simulation. This means that there is a lower probability to
discover new folds, and thus a reduction in the total
number of discovered folds by the end of the simulation.

Specifically, when 100,000 proteins were uniformly de-
composed into 1,000 folds, a biased sampling of twofold
preference towards previously identified folds caused a
reduction of 7% in folds discovery. However, a twofold
preference towards unidentified folds, under the same
assumptions, gave only a 4% increase in folds discovery.
This can be explained by the fact that the probability of
discovering a new fold when 96% of them were already
discovered is extremely low, so a greater number of
samples (much greater than 10,000) is needed to sample a
protein from a new fold. (This phenomenon occurs also in
the related simplified probability model known as the
“Coupon Collector’s Problem”; see, e.g., Ross11.) Increasing
the sampling bias for previously identified folds to 1,000
resulted in lowering the number of identified folds by an
order of magnitude to 9.3% (see Table III).

Combining the effects of nonuniform folds distribution
and biased sampling leads to a further reduction in the
number of discovered folds after 10,000 protein samples.
The right side of equation 4 grows rapidly during the first
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quarter of the simulation (approximately 3,000 samples in
a uniform distribution with nonbiased sampling) since the
larger folds are usually identified faster. Its rapid growth
marks new folds discoveries, so when its growth slows
down, it indicates that fewer and fewer new folds are
discovered, thereby marking a plateau in the fold discov-
ery graph. Under the assumption of at least a twofold
preference towards previously identified folds, the right
side of equation 4 grows even faster than in the uniform,
nonbiased case; thus a plateau is reached faster (after
about 2,000–2,500 samples).

Estimation of Total Number of Folds

As already stated, the purpose of this study was not so
much to estimate the total number of possible folds, but
rather to understand the effects of various factors upon the
estimation potential. Current estimates for the number of
folds span a range of more than an order of magnitude,
from 400 to 8,000 folds.11–18 The results obtained in this
study in the case of uniformly sampled proteins selected
from a protein population uniformly distributed into folds
indicate that sampling one tenth of the population results
in identifying approximately 90% of the folds. The results
obtained are not dramatically different if the model used
(100,000 proteins divided into 1,000 folds) is altered.
Furthermore, the results obtained regarding twofold pref-
erential sampling (or avoidance) of previously identified
folds does not alter the results substantially. Likewise,
changing the nature of the distribution of proteins into
folds did not affect the result substantially.

Thus, it may be possible to conclude that more recent
estimates that point to a total number of folds of 1,000 or
less15–18 are more consistent with our Monte Carlo simula-
tions. An increase from the aforementioned estimate for
the total number of folds would reflect the possibility of the
presence of at least one of the following two causes:

● The preferential sampling of previously identified folds
is substantially greater than that considered in this
study (i.e., � 2); or,

● The distribution of proteins into folds is dramatically
different from a uniform distribution, in that many
proteins belong to sparsely populated (i.e., unique)
folds.

Which of the above factors might result in lowering the
number of experimentally observed folds can be ascer-
tained from studying what happens to the sampling effi-
ciency under (1) extreme sampling biases or (2) extreme
preferential sampling.

(1) Upon skewing the distribution, such that 96% of the
folds contains ten or fewer proteins (y � 100), sampling
10% of the proteins, results in identifying only 15% of the
folds. (2) Upon increasing the preferential sampling of
previously identified folds to 1,000, a reduction in the
number of identified folds by an order of magnitude (9%)
was observed.

While it is difficult to estimate if such extreme distribu-
tions are indeed present in nature, it should be kept in

mind that a preference for sampling previously identified
folds of 1,000 should not be considered extraordinary. As a
case in point, the rate at which the structures of mem-
brane proteins are solved is roughly 500 times less than
the rate at which water-soluble proteins are solved.20

CONCLUSIONS

In summary, using the Monte Carlo simulation and the
broken stick model, a hypothetical model was built to
examine the effects of two factors upon the process of fold
discovery. Given an arbitrary number of proteins and
folds, and using different arbitrary parameters for the
folds distribution bias and sampling bias, different cases
were simulated in which (1) folds are distributed uni-
formly and there is no preferential sampling; (2) folds are
nonuniformly distributed with no preferential sampling;
(3) folds are uniformly distributed but there is preferential
sampling or avoidance, which attempts to simulate the
process of experimental determination of structures; (4)
folds are nonuniformly distributed in addition to preferen-
tial sampling or avoidance. Using the proposed model with
these choices of parameters, one may conclude that a
significant fraction of the total number of folds has been
discovered. However, as this is only a theoretical model,
one can make different assumptions to measure the im-
pact of these factors, and, perhaps, if these differ substan-
tially from those examined here, reach different conclu-
sions.
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